Question

In: Advanced Math

By induction: 1. Prove that Σni=1(2i − 1) = n2 2. Prove thatΣni=1 i2 = n(n+1)(2n+1)...

By induction:

1. Prove that Σni=1(2i − 1) = n2

2. Prove thatΣni=1 i2 = n(n+1)(2n+1) / 6 .

Solutions

Expert Solution

i think u want this proof. your question 1 is not clear. Also 2nd is not clear

but i tried my best
1 2 + 2 2 + 3 2 + ... + n 2 = n (n + 1) (2n + 1)/ 26
STEP 1: We first show that p (1) is true.
Left Side = 1 2 = 1
Right Side = 1 (1 + 1) (2*1 + 1)/ 6 = 1
Both sides of the statement are equal hence p (1) is true.
STEP 2: We now assume that p (k) is true
1 2 + 2 2 + 3 2 + ... + k 2 = k (k + 1) (2k + 1)/ 6
and show that p (k + 1) is true by adding (k + 1) 2 to both sides of the above statement
1 2 + 2 2 + 3 2 + ... + k 2 + (k + 1) 2 = k (k + 1) (2k + 1)/ 6 + (k + 1) 2
Set common denominator and factor k + 1 on the right side
= (k + 1) [ k (2k + 1)+ 6 (k + 1) ] /6
Expand k (2k + 1)+ 6 (k + 1)
= (k + 1) [ 2k 2 + 7k + 6 ] /6
Now factor 2k 2 + 7k + 6.
= (k + 1) [ (k + 2) (2k + 3) ] /6
We have started from the statement P(k) and have shown that
1 2 + 2 2 + 3 2 + ... + k 2 + (k + 1) 2 = (k + 1) [ (k + 2) (2k + 3) ] /6
Which is the statement P(k + 1).


Related Solutions

Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2)...
Prove these scenarios by mathematical induction: (1) Prove n2 < 2n for all integers n>4 (2) Prove that a finite set with n elements has 2n subsets (3) Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps
Use induction to prove that 2 + 4 + 6 + ... + 2n = n2...
Use induction to prove that 2 + 4 + 6 + ... + 2n = n2 + n for n ≥ 1. Prove this theorem as it is given, i.e., don’t first simplify it algebraically to some other formula that you may recognize before starting the induction proof. I'd appreciate if you could label the steps you take, Thank you!
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for...
Prove the following by induction: 2 + 4 + 6 + …+ 2n = n(n+1) for all integers n Show all work
Prove by induction that: 1) x^n - 1 is divisible by x-1 2)2n < 3^n for...
Prove by induction that: 1) x^n - 1 is divisible by x-1 2)2n < 3^n for all natural numbers n
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a...
2. [6 marks] (Induction) Prove that 21 divides 4n+1 + 5 2n−1 whenever n is a positive integer. HINT: 25 ≡ 4(mod 21)
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for...
Use a mathematical induction for Prove a^(2n-1) + b^(2n-1) is divisible by a + b, for n is a positive integer
Using an induction proof technique, prove that the sum from i=1 to n of (2i-1) equals...
Using an induction proof technique, prove that the sum from i=1 to n of (2i-1) equals n*n
Ex 4. (a) Prove by induction that ∀n∈N,13+ 23+ 33+···+n3=[(n(n+ 1))/2]2 b) Prove by induction that...
Ex 4. (a) Prove by induction that ∀n∈N,13+ 23+ 33+···+n3=[(n(n+ 1))/2]2 b) Prove by induction that 2n>2n for every natural number n≥3.
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is...
5. Without using the method of mathematical induction, prove that 5^n − 3^n + 2n is divisible by 4 for all natural n.
Prove that 2n+10 +n is O(2n)
Prove that 2n+10 +n is O(2n)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT