Question

In: Statistics and Probability

x 1 2 3 4 5 6 y 1057 1510 2151 3499 5146 7261 Use linear...

x 1 2 3 4 5 6
y 1057 1510 2151 3499 5146 7261

Use linear regression to find the equation for the linear function that best fits this data. Round to two decimal places.

Y=

Solutions

Expert Solution

X Y XY X^2 Y^2
1 1057 1057 1 1117249
2 1510 3020 4 2280100
3 2115 6345 9 4473225
4 3499 13996 16 12243001
5 5146 25730 25 26481316
6 7261 43566 36 52722121
n 6
sum(XY) 93822.00
sum(X) 21.00
sum(Y) 20624.00
sum(X^2) 91.00
sum(Y^2) 99470588.00
Numerator 129828.00
Denominator 134181.91
r 0.9676
r square 0.9362
Xbar(mean) 3.5000
Ybar(mean) 3437.3333
SD(X) 1.7078
SD(Y) 2182.4690
b 1236.4571
a -890.2667

y = -890.27 + 1236.46x


Related Solutions

ID X Y 1 2 3 2 3 6 3 4 6 4 5 7 5...
ID X Y 1 2 3 2 3 6 3 4 6 4 5 7 5 8 7 6 5 7 7 6 7 8 8 8 9 7 8 10 12 11 Test the significance of the correlation coefficient. Then use math test scores (X) to predict physics test scores (Y).  Do the following: Create a scatterplot of X and Y. Write the regression equation and interpret the regression coefficients (i.e., intercept and slope). Predict the physics score for each....
X 1 3 5 3 4 4 Y 2 5 4 3 4 6 A: Plot...
X 1 3 5 3 4 4 Y 2 5 4 3 4 6 A: Plot the date B: find the line of best fit C: determine ŷ AT x=3 D: Find r and r^2 E: explain r and r^2
2. Consider the following data: x= 1, 2, 3, 4, 5 y =3, 2, 4, 6,...
2. Consider the following data: x= 1, 2, 3, 4, 5 y =3, 2, 4, 6, 5 By hand, not using Matlab, and showing your work: (a) Compute the correlation coefficient. (b) Find the least-squares line. (c) Find the standard deviation around the least-squares line.
1) Define the sets X ={ 1, 2, 3} and Y = {4, 5, 6}. Now,...
1) Define the sets X ={ 1, 2, 3} and Y = {4, 5, 6}. Now, define the relation R from X to Y by xRy if and only if x − y is even. Find all of the elements in R. 2) Define the relation R on ℤ by mRn if and only if 2|(m − n). Show that R is an equivalence relation.
Linear Regression and Correlation. x y 2 4.64 3 6.76 4 3.08 5 5.5 6 -5.88...
Linear Regression and Correlation. x y 2 4.64 3 6.76 4 3.08 5 5.5 6 -5.88 7 1.04 8 0.56 9 -2.42 Compute the equation of the linear regression line in the form y = mx + b, where m is the slope and b is the intercept. Use at least 3 decimal places. (Round if necessary) y =_____ x + _____ Compute the correlation coeficient for this data set. Use at least 3 decimal places. (Round if necessary) r=...
Linear Regression and Correlation. x y 2 10.16 3 2.19 4 3.12 5 -1.75 6 7.48...
Linear Regression and Correlation. x y 2 10.16 3 2.19 4 3.12 5 -1.75 6 7.48 7 9.31 Compute the equation of the linear regression line in the form y = mx + b, where m is the slope and b is the intercept. Use at least 3 decimal places. y =__x +___ Compute the correlation coeficient for this data set. Use at least 3 decimal places. r=   Compute the P-value (Use H_A: slope ≠ 0 for the alterantive hypothesis.)...
1. x 1 2 3 4 5 6 y 708 711 721 716 756 743 Use...
1. x 1 2 3 4 5 6 y 708 711 721 716 756 743 Use linear regression to find an linear function that best fits this data. Round to 2 decimal places. y =     2. x 1 2 3 4 5 6 y 710 10077 44352 135011 321471 642734 Use linear regression to find the equation for the linear function that best fits this data. Round to two decimal places. y^ =    3. x 1 2 3 4 5...
Consider the following data table: x 8 5 4 6 2 5 3 y 1 3...
Consider the following data table: x 8 5 4 6 2 5 3 y 1 3 6 3 7 2 5 (15 points) Create a scatterplot of the data either by hand or with a computer.  Does there appear to be a linear relationship between x and y?  If so, what is the strength and direction of the relationship? (20 points) Give the Simple Linear Regression Model, using x as the predictor variable and y as the response variable.  What is the meaning...
x 1 2 3 4 5 6 y 608 619 674 672 676 721 Use exponential...
x 1 2 3 4 5 6 y 608 619 674 672 676 721 Use exponential regression to find an exponential function that best fits this data. f(x) =      Use linear regression to find an linear function that best fits this data. g(x) =    
Returns on stocks X and Y are listed below: Period 1 2 3 4 5 6...
Returns on stocks X and Y are listed below: Period 1 2 3 4 5 6 7 Stock X 3% -2% 9% 6% -1% -4% 11% Stock Y 1% -4% 7% 12% 3% -2% -1% Consider a portfolio of 20% stock X and 80% stock Y. What is the (population) variance of portfolio returns? Please round your answer to six decimal places. Note that the correct answer will be evaluated based on the full-precision result you would obtain using Excel.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT