In: Statistics and Probability
In each case, determine the value of the constant c the makes the probability statement correct.
Solution :
Using standard normal table,
a.
= 0.9838
P(Z < z) = 0.9838
P(Z < 2.14) = 0.9838
c = 2.14
b.
P( 0 z c) = 0.291
P(Z c) - P(Z 0) = 0.291
P(Z c) = P(Z 0) + 0.291
P(Z c) = 0.5 + 0.291 = 0.791
P(Z 0.81) = 0.791
c = 0.81
c.
P(c Z) = 0.121
P(Z c) = 0.121
1 - P(Z c) = 0.121
P(Z c) = 1 - 0.121 = 0.879
P(Z 1.17) = 0.879
c = 1.17
d.
P(-c Z c) = 0.668
P(Z c) - P(Z -c) = 0.668
2P(Z c) - 1 = 0.668
2P(Z c) = 1 + 0.668 = 1.668
P(Z c) = 1.668 / 2 = 0.834
P(Z 0.97) = 0.834
c = 0.97
e.
P(c |Z|) = 0.016
2 * [1 - P(z < c)] = 0.016
1 - P(z < c) = 0.016 / 2 = 0.008
P(z < c) = 1 - 0.008 = 0.992
P(z < 2.41) = 0.992
c = 2.41