In: Math
In each case, determine the value of the constant c that makes the probability statement correct. (Round your answers to two decimal places.)
(a) Φ(c) = 0.9854
(b) P(0 ≤ Z ≤ c)
= 0.3078
(c) P(c ≤ Z) =
0.1210
(d) P(−c ≤ Z ≤
c) = 0.6680
(e) P(c ≤ |Z|) =
0.0160
You may need to use the appropriate table in the Appendix of Tables
to answer this question.
Solution :
Using standard normal table,
Solution :
Using standard normal table,
(a)
= 0.9854
P(Z < z) = 0.9854
P(Z < 2.18) = 0.9854
c = 2.18
(b)
P( 0 z c) = 0.3078
P(Z c) - P(Z 0) = 0.3078
P(Z c) = P(Z 0) + 0.3078
P(Z c) = 0.5 + 0.3078 = 0.8078
P(Z 0.87) = 0.8078
c = 0.87
(c)
P(c Z) = 0.1210
P(Z c) = 0.1210
1 - P(Z c) = 0.120
P(Z c) = 1 - 0.1210 = 0.879
P(Z 1.17) = 0.879
c = 1.17
(d)
P(-c Z c) = 0.6680
P(Z c) - P(Z -c) = 0.6680
2P(Z c) - 1 = 0.6680
2P(Z c) = 1 + 0.6680 = 1.6680
P(Z c) = 1.6680 / 2 = 0.8340
P(Z 0.97) = 0.8340
c = 0.97
(e)
P(c |Z|) = 0.0160
2 * [1 - P(z < c)] = 0.0160
1 - P(z < c) = 0.0160 / 2 = 0.008
P(z < c) = 1 - 0.008 = 0.992
P(z < 2.41) = 0.992
c = 2.41