In: Statistics and Probability
A sample of 25 items provides a sample standard deviation of 6. (a) Compute the 90% confidence interval estimate of the population variance. (Round your answers to two decimal places.) ____ to ____ (b) Compute the 95% confidence interval estimate of the population variance. (Round your answers to two decimal places.) _____to _____ (c) Compute the 95% confidence interval estimate of the population standard deviation. (Round your answers to one decimal place.) _____to ____
Solution :
Given that,
(a)
s = 6
Point estimate = s2 = 36
2R
=
2
/2,df
= 36.415
2L
=
21 -
/2,df = 13.848
The 90% confidence interval for
2 is,
(n - 1)s2 /
2
/2
<
2 < (n - 1)s2 /
21 -
/2
(24)(36) / 36.415 <
2 < (24)(36) / 13.848
23.73 <
2 < 62.39
(23.73 to 62.39)
(b)
s = 6
Point estimate = s2 = 36
2R
=
2
/2,df
= 39.364
2L
=
21 -
/2,df = 12.401
The 95% confidence interval for
2 is,
(n - 1)s2 /
2
/2
<
2 < (n - 1)s2 /
21 -
/2
(24)(36) / 39.364 <
2 < (24)(36) / 12.401
21.95 <
2 < 69.67
(21.95 to 69.67)
(c)
s = 6
s2 = 36
2R
=
2
/2,df
= 39.364
2L
=
21 -
/2,df = 12.401
The 95% confidence interval for
is,
(n
- 1)s2 /
2
/2
<
<
(n - 1)s2 /
21 -
/2
(24)(36)
/ 39.364 <
<
(24)(36) / 12.401
4.7 <
< 8.3
(4.7 to 8.3 )