Question

In: Statistics and Probability

A population has a mean of 300 and a standard deviation of 90. Suppose a sample...

A population has a mean of 300 and a standard deviation of 90. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table.

  1. What is the probability that the sample mean will be within +/- 7 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.)
  2. What is the probability that the sample mean will be within +/- 13 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.)

Solutions

Expert Solution

Solution :

Given that,

mean = = 300

standard deviation = = 90

n = 125

= = 300

= / n = 90 / 125 = 8.05

a) P(293 < < 307)  

= P[(293 - 300) /8.05 < ( - ) / < (307 - 300) / 8.05)]

= P(-0.87 < Z < 0.87)

= P(Z < 0.87) - P(Z < -0.87)

Using z table,  

= 0.8078 - 0.1922   

= 0.6156

b) P(287 < < 313)  

= P[(287 - 300) /8.05 < ( - ) / < (313 - 300) / 8.05)]

= P(-1.61 < Z < 1.61)

= P(Z < 1.61) - P(Z < -1.61)

Using z table,  

= 0.9463 - 0.0537

= 0.8926


Related Solutions

A population has a mean of 300 and a standard deviation of 90. Suppose a sample...
A population has a mean of 300 and a standard deviation of 90. Suppose a sample of size 125 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 3 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) 0.8884 What is the probability that the sample mean will be within +/- 11 of the population mean (to 4 decimals)?...
A population has a mean of 400 and a standard deviation of 90. Suppose a sample...
A population has a mean of 400 and a standard deviation of 90. Suppose a sample of size 125 is selected and x bar is used to estimate mu. a. What is the probability that the sample mean will be within +/- 5 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) b.What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)?...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 3 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 10 of the population mean (to 4 decimals)? (Round z...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 125 is selected and X is used to estimate M. Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)?...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample...
A population has a mean of 300 and a standard deviation of 80. Suppose a sample of size 125 is selected and X is used to estimate M. Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)?...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 100 is selected and is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 6 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 18 of the population mean (to 4 decimals)? (Round...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample...
A population has a mean of 300 and a standard deviation of 70. Suppose a sample of size 100 is selected x and is used to estimate m. Use z-table. a. What is the probability that the sample mean will be within +/- 3 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) b. What is the probability that the sample mean will be within +/- 13 of the population mean (to...
A population has a mean of 300 and a standard deviation of 18. A sample of...
A population has a mean of 300 and a standard deviation of 18. A sample of 144 observations will be taken. The probability that the sample mean will be less than 303 is 0.4332 0.9772 0.9544 0.0668 None of the above
A population has a mean of 400 and a standard deviation of 70. Suppose a sample...
A population has a mean of 400 and a standard deviation of 70. Suppose a sample of size 125 is selected. Use z-table. a. What is the probability that the sample mean will be within +4 or -4 of the population mean (to 4 decimals)? b. What is the probability that the sample mean will be within +10 0r -10 of the population mean (to 4 decimals)?
A population has a mean of 400 and a standard deviation of 60. Suppose a sample...
A population has a mean of 400 and a standard deviation of 60. Suppose a sample of size 125 is selected and  is used to estimate . Use z-table. What is the probability that the sample mean will be within +/- 4 of the population mean (to 4 decimals)? (Round z value in intermediate calculations to 2 decimal places.) What is the probability that the sample mean will be within +/- 15 of the population mean (to 4 decimals)? (Round z...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT