In: Statistics and Probability
a)
i)
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 7
't value=' tα/2= 2.3646 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 29.9368 /
√ 8 = 10.584271
margin of error , E=t*SE = 2.3646
* 10.58427 = 25.027823
confidence interval is
Interval Lower Limit = x̅ - E = 419.25
- 25.027823 = 394.222177
Interval Upper Limit = x̅ + E = 419.25
- 25.027823 = 444.277823
95% confidence interval is (
394.22 < µ < 444.28
)
.....
ii)
friday
Level of Significance , α =
0.05
degree of freedom= DF=n-1= 9
't value=' tα/2= 2.2622 [Excel
formula =t.inv(α/2,df) ]
Standard Error , SE = s/√n = 53.3626 /
√ 10 = 16.874735
margin of error , E=t*SE = 2.2622
* 16.87473 = 38.173302
confidence interval is
Interval Lower Limit = x̅ - E = 407.30
- 38.173302 = 369.126698
Interval Upper Limit = x̅ + E = 407.30
- 38.173302 = 445.473302
95% confidence interval is (
369.13 < µ < 445.47
)
......
iii)
Degree of freedom, DF=
14
t-critical value = t α/2 =
2.145 (excel formula =t.inv(α/2,df)
std error , SE = √(s1²/n1+s2²/n2) =
19.919
margin of error, E = t*SE = 2.145
* 19.919 = 42.7229
difference of means = x̅1-x̅2 = 419.2500
- 407.300 = 11.9500
confidence interval is
Interval Lower Limit = (x̅1-x̅2) - E =
11.9500 - 42.723 =
-30.7729
Interval Upper Limit = (x̅1-x̅2) + E =
11.9500 - 42.723 =
54.6729
...................
b)
Ho : µ1 - µ2 = 0
Ha : µ1-µ2 > 0
Level of Significance , α =
0.05
Sample #1 ----> sample 1
mean of sample 1, x̅1= 419.25
standard deviation of sample 1, s1 =
29.93683827
size of sample 1, n1= 8
Sample #2 ----> sample 2
mean of sample 2, x̅2= 407.300
standard deviation of sample 2, s2 =
53.36
size of sample 2, n2= 10
difference in sample means = x̅1-x̅2 =
419.250 - 407.3000
= 11.9500
std error , SE = √(s1²/n1+s2²/n2) =
19.9194
t-statistic = ((x̅1-x̅2)-µd)/SE = (
11.9500 / 19.9194 )
= 0.5999
Degree of freedom, = 14
p-value =
0.2791 [excel function: =T.DIST.RT(t stat,df)
]
Conclusion: p-value>α , Do not reject null
hypothesis
no, we can not conclude that the Wednesday exam had a higher average than the Friday exam
...............
c)
t-critical value , t* = 1.7459 (excel function: =t.inv(α,df)
critical region : test stat > 1.7459
here,
Decision: | t-stat | < | critical value |, so, Do not Reject Ho
...............
d)
std error , SE = √(s1²/n1+s2²/n2) =
19.9194
(x - µo)/SE = Zα/2
Zα/2 = 1.645 (RIGHT tailed test)
SO,
x= Zα/2 *SE + µo
= 1.645*19.9194 + 11.95
x =44.72
ß= P ( Z < =(x̄-true mean)/SE )
= P(Z<=0.9398)
=0.8263
POWER = 1-ß = 1- 0.8263
= 0.1737
e)
probability of type 1 error = 0.05
f)
PROBABILITY of type II error is very high.
by ensuring your test has enough power, you can reduce error
sample size should large enough.
increase the level of significance
please revert back for doubt