Question

In: Statistics and Probability

---Find the 98% confidence interval for the difference between two means based on this information about...

---Find the 98% confidence interval for the difference between two means based on this information about two samples. Assume independent samples from normal populations. (Use conservative degrees of freedom.) (Give your answers correct to two decimal places.)

Sample Number Mean Std. Dev.
1 18 40 30
2 17 28 25
Lower Limit
Upper Limit

---Find the value of t for the difference between two means based on an assumption of normality and this information about two samples. (Use sample 1 - sample 2. Give your answer correct to two decimal places.)

Sample Number Mean Std. Dev.
1 28 37.2 15
2 23 42.3 10.9

---If a random sample of 20 homes south of a town has a mean selling price of $145,375 and a standard deviation of $4825, and a random sample of 23 homes north of a town has a mean selling price of $148,550 and a standard deviation of $5925, can you conclude that there is a significant difference between the selling price of homes in these two areas of the town at the 0.05 level? Assume normality.

(a) Find t. (Round your answer to two decimal places.)


(ii) Find the p-value. (Round your answer to four decimal places.)

---Twenty laboratory mice were randomly divided into two groups of 10. Each group was fed according to a prescribed diet. At the end of 3 weeks, the weight gained by each animal was recorded. Do the data in the following table justify the conclusion that the mean weight gained on diet B was greater than the mean weight gained on diet A, at the α = 0.05 level of significance? Assume normality. (Use Diet B - Diet A.)

Diet A 14 5 7 12 12 10 8 6 9 10
Diet B 20 23 15 22 13 19 17 19 23 8


(a) Find t. (Give your answer correct to two decimal places.)


(ii) Find the p-value. (Give your answer correct to four decimal places.)

Solutions

Expert Solution


Related Solutions

You are trying to estimate the confidence interval for the difference between two population means based...
You are trying to estimate the confidence interval for the difference between two population means based on two independent samples of sizes n1=24 and n2=28. Which option below is NOT relevant for this case? Select one: a. To build the CI we have to obtain the critical value from a t-distribution with appropriate degrees of freedom. b. To build the CI we have to estimate sample means based on each random sample. c. To build the CI we have to...
Construct the indicated confidence interval for the difference between the two population means.
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. Independent samples from two different populations yield the following data. The sample size is 478 for both samples. Find the \(85 \%\) confidence interval for \(\mu_{1}-\mu_{2}\). \(\bar{x}_{1}=958, \bar{x}_{2}=157, s_{1}=77, s_{2}=88\) A. \(800<\mu_{1}-\mu_{2}<802\) B. \(791<\mu_{1}-\mu_{2}<811\) C. \(793<\mu_{1}-\mu_{2}<809\) D. \(781<\mu_{1}-\mu_{2}<821\)
1. Confidence interval for the difference between the two population means. (Assume that the two samples...
1. Confidence interval for the difference between the two population means. (Assume that the two samples are independent simple random samples selected from normally distributed populations.) A researcher was interested in comparing the GPAs of students at two different colleges. Independent simple random samples of 8 students from college A and 13 students from college B yielded the following summary statistics: College A College B = 3.1125 = 3.4385 s1 = 0.4357 s2 = 0.5485 n1 = 8 n2 =...
Describe a confidence interval for the difference in means between two population by stating 1. a...
Describe a confidence interval for the difference in means between two population by stating 1. a pair of populations composed of the same type of individuals and a quantitative variable on those populations, 2. sizes and degrees of freedom of samples from those populations, 3. the means of those samples, and 4. the standard deviations of those samples. Then state 5. a confidence level and find 6. find the interval. Finally, perform a test of significance concerning the difference in...
Construct the indicated confidence interval for the difference between the two population means. Assume that the...
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally distributed populations. Do not assume that the population standard deviations are equal. A paint manufacturer wished to compare the drying times of two different types of paint. Independent simple random samples of 11 cans of type A and 9 cans of type B were selected and applied to similar surfaces. The drying times, in...
Construct the indicated confidence interval for the difference between the two population means. Assume that the...
Construct the indicated confidence interval for the difference between the two population means. Assume that the two samples are independent simple random samples selected from normally distributed populations. Also assume that the population standard deviations are equal (sigma1 = sigma2), so that the standard error of the difference between means is obtained by pooling the sample variances. A paint manufacturer wanted to compare the drying times of two different types of paint. Independent simple random samples of 11 cans of...
In constructing 95% confidence interval estimate for the difference between the means of two populations, where...
In constructing 95% confidence interval estimate for the difference between the means of two populations, where the unknown population variances are assumed not to be equal, summary statistics computed from two independent samples are: ?1=45,?̅1=756,?1=18,?2=40,?̅2=762,?2=15 (using 2-sample T menu) a. Calculate the 95% confidence interval for the true difference of two means. b. Base on the interval in the previous question, can one conclude there is a difference in means of two populations? Justify your answer.
Find a 95% confidence interval for the difference of two means when you have independent samples,...
Find a 95% confidence interval for the difference of two means when you have independent samples, both of size 36, from two populations, in which the variances are not known to be equal. In this case, n1=36, s12=8.2, the first sample mean is equal to 7.9; n2 =36, s22=10.4, the second sample mean is equal to 9.1 Interpret the interval once you find it. Namely, can you conclude one mean is greater than the other mean and if so, which...
Use the t-distribution to find a confidence interval for a difference in means μ1 − μ2...
Use the t-distribution to find a confidence interval for a difference in means μ1 − μ2 given the relevant sample results. Assume the results come from random samples from populations that are approximately normally distributed. a) A 95% confidence interval for μ1 − μ2 using the sample results x1 ̅= 70.2, s1 = 9.7, n1 = 35 and x2 ̅= 67.5, s2 = 8.0, n2 = 30. b) A 99% confidence interval for μ1 − μ2 using the sample results...
Use a t-distribution to find a confidence interval for the difference in means μd = μ1...
Use a t-distribution to find a confidence interval for the difference in means μd = μ1 - μ2 using the relevant sample results from paired data. Assume the results come from random samples from populations that are approximately normally distributed, and that differences are computed using d = x1 - x2. A 99% confidence interval for μd using the paired data in the following table: Case 1 2 3 4 5 Treatment 1 22 29 30 24 28 Treatment 2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT