Question

In: Statistics and Probability

1 20.8 1 20.4 1 25.1 1 27.4 1 15.4 1 15.3 1 13.9 2 16.3...

1 20.8
1 20.4
1 25.1
1 27.4
1 15.4
1 15.3
1 13.9
2 16.3
2 14.5
2 10.4
2 12.2
2 12.5
2 9.5
2 15.3
3 16.8
3 20.9
3 28.4
3 22.5
3 17.5
3 14.9
3 22.4
3 17.5
3 25.4
3 22.4
4 16.7
4 14.5
4 13.7
4 15.4
4 12.4
4 16
4 7.5
4 12.9
4 18.3

nCalculate a 95% confidence interval for the mean mileage of make 2. Use the method for single meanswhen σ is not known, but use the Error Mean Square as the estimate of the variance. The degrees of freedom will be the Error DF, not n‑1!

Reminders:

Confidence Interval = mean ± margin of error

Margin of error = critical value * standard error

Use critical value for T at a/2 = 0.025 and df = error df  (t table or EXCEL T.INV function)

Use standard error = Ö(error mean square/number of observations of that make of car)

10. What was the margin of error for the confidence interval for gasoline mileage of make 2?

11. What was the lower 95% confidence limit for make 2 mileage?

12. What was the upper 95% confidence limit for make 2 mileage?

                                                                                                                                      {Example 24}

nConduct a test of hypothesis that the mean mileage of makes 2 and 3 do not differ. Use the method for single means when σ is not knownwith the Error MS serving as the pooled variance.

Reminders:

            Test statistic t = difference of means / standard error of difference of means.

The standard error of the difference equals square root of the sumof variances of the two means. The variance of each mean is estimated by the error mean square/number of observations in that mean.

13. What is the value of the t test statistic for testing the hypothesis that makes 2 and 3 do not differ in mileage?

Solutions

Expert Solution

1 2 3 4
20.8 16.3 16.8 16.7
20.4 14.5 20.9 14.5
25.1 10.4 28.4 13.7
27.4 12.2 22.5 15.4
15.4 12.5 17.5 12.4
15.3 9.5 14.9 16
13.9 15.3 22.4 7.5
17.5 12.9
25.4 18.3
22.4
Mean 19.75714 12.95714 20.87 14.15556
SD 5.190009 2.527091 4.209526 3.120141
n 7 7 10 9

Mean = AVEARGE()

SD = STDEV()

10)

mean mileage of make 2

Margin of error = tc*(S/SQRT(n)) = 2.3372

95% CI of mean mileage of make 2

CI
tc 2.446912 T.INV.2T(α,df)
Upper 15.29428 X bar + tc*(S/SQRT(n))
Lower 10.61992 X bar - tc*(S/SQRT(n))

11) Lower CI limit = 10.6199

12) Upper CI limit = 15.2943

13)

Hypothesis:

Ho: μ1​ = μ2​

Ha: μ1​ ≠ μ2​

Test:

Sp^2    13.18642791 ((n1-1)S1^2+(n2-1)S2^2)/(n1+n2-2)
t stat -4.421775145 (X1 bar-X2 bar )/SQRT(Sp*(1/n1 + 1/n2))
P value 0.000494862 T.DIST.2T(ts,df)

P value < 0.05, reject H0

There is enough evidence to claim mean mileage of makes 2 and 3 are differ


Related Solutions

1 20.8 1 20.4 1 25.1 1 27.4 1 15.4 1 15.3 1 13.9 2 16.3...
1 20.8 1 20.4 1 25.1 1 27.4 1 15.4 1 15.3 1 13.9 2 16.3 2 14.5 2 10.4 2 12.2 2 12.5 2 9.5 2 15.3 3 16.8 3 20.9 3 28.4 3 22.5 3 17.5 3 14.9 3 22.4 3 17.5 3 25.4 3 22.4 4 16.7 4 14.5 4 13.7 4 15.4 4 12.4 4 16 4 7.5 4 12.9 4 18.3  Calculate a 95% confidence interval for the mean mileage of make 2. Use...
1   26.5 1   28.7 1   25.1 1   29.1 1   27.2 2   31.2 2   28.3 2   30.8...
1   26.5 1   28.7 1   25.1 1   29.1 1   27.2 2   31.2 2   28.3 2   30.8 2   27.9 2   29.6 3   27.9 3   25.1 3   28.5 3   24.2 3   26.5 4   30.8 4   29.6 4   32.4 4   31.7 4   32.8 Q1: • Test for equal variations using the Bartlett test. Calculating the value of the test statistic o Finding critical (tabular) values o Determine the area rejecting the null hypothesis the decision Conclusion
Name the data type,value type and array size / name of the followings. 1) 20.4 2)...
Name the data type,value type and array size / name of the followings. 1) 20.4 2) a=5 3) [2 3 8] 4) ' 7 ' 5) ' abc' 6) pi 7) b=true 8) 20+2i 9) [ 'a' 'b' 'c' ] 10) [ 'a' ; 'b' ] 11) [1 2 ;4 5;7 8] 12) [20,21,22,23] 13) c= [a;b] 14) c= [b:a] 15) d=[b:a ; b:a] 16) magic(3) 17 uint8(20) 18) int8(d)
Policy Holder # Life Expectancy at 65 1 20.4 2 22.2 3 17.6 4 27.2 5...
Policy Holder # Life Expectancy at 65 1 20.4 2 22.2 3 17.6 4 27.2 5 24.5 6 20.3 7 21.3 8 22.5 9 26.7 10 18.3 11 23.5 12 25.6 13 22.1 14 24.2 15 15.4 16 23.4 17 25.3 18 18.5 19 24.2 20 20.3 21 26.8 22 28.1 23 19.9 24 25.5 25 22.3 26 23.9 27 31.7 28 26.0 29 22.8 30 23.3 31 25.9 32 17.7 33 19.6 34 21.8 35 23.3 36 21.9 37...
Policy Holder # Life Expectancy at 65 1 20.4 2 22.2 3 17.6 4 27.2 5...
Policy Holder # Life Expectancy at 65 1 20.4 2 22.2 3 17.6 4 27.2 5 24.5 6 20.3 7 21.3 8 22.5 9 26.7 10 18.3 11 23.5 12 25.6 13 22.1 14 24.2 15 15.4 16 23.4 17 25.3 18 18.5 19 24.2 20 20.3 21 26.8 22 28.1 23 19.9 24 25.5 25 22.3 26 23.9 27 31.7 28 26.0 29 22.8 30 23.3 31 25.9 32 17.7 33 19.6 34 21.8 35 23.3 36 21.9 37...
Leading digit Count Actual Distribution Expected Distribution Cumulative difference 1 38 31.1% 2 17 13.9% 3...
Leading digit Count Actual Distribution Expected Distribution Cumulative difference 1 38 31.1% 2 17 13.9% 3 25 20.5% 4 9 7.4% 5 9 7.4% 6 3 2.5% 7 11 9% 8 5 4.1% 9 5 4.1% Totals 122 100% KS CUTOFF what are the excel formulas for Expected Distribution and Cumulative Difference
Assume that the current interest rate on a 1-year bond is 8 percent, the current rate on a 2-year bond is 15.9 percent, and the current rate on a 3-year bond is 13.9 percent.
Assume that the current interest rate on a 1-year bond is 8 percent, the current rate on a 2-year bond is 15.9 percent, and the current rate on a 3-year bond is 13.9 percent. If the expectations theory of the term structure is correct, what is the difference between the 1-year interest rate expected during Year 3 and the current one year rate?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT