Question

In: Statistics and Probability

In a survey of women in a certain country​ (ages 20-​29), the mean height was 65.1...

In a survey of women in a certain country​ (ages 20-​29), the mean height was 65.1 inches with a standard deviation of 2.84 inches. Answer the following questions about the specified normal distribution. ​(a) What height represents the 95th ​percentile? ​(b) What height represents the first​ quartile?

Solutions

Expert Solution

Solution:

Given: Women in a certain country​ (ages 20-​29), follow a normal distribution with the mean height was 65.1 inches with a standard deviation of 2.84 inches.

Part a) What height represents the 95th ​percentile?​

That is find x value such that:

P( X < x ) = 95%

P( X < x ) = 0.95

Thus find z value such that:

P( Z < z ) =0.95

Look in z table for Area = 0.9500 or its closest area and find corresponding z value.

Area 0.9500 is in between 0.9495 and 0.9505 and both the area are at same distance from 0.9500

Thus we look for both area and find both z values

Thus Area 0.9495 corresponds to 1.64 and 0.9505 corresponds to 1.65

Thus average of both z values is : ( 1.64+1.65) / 2 = 1.645

Thus z  = 1.645

Now use following formula to find x value:

Thus  the 95th ​percentile height is 69.77 inches.

Part b) What height represents the first​ quartile?

Area below first quartile is 25%.

That is:

P(X < Q1 ) = 25%

P(X < Q1 ) = 0.25

Thus find z value such that:

P( Z < z ) =0.25

Look in z table for Area = 0.2500 or its closest area and find z value.

Area 0.2514 is closest to 0.2500 and it corresponds to -0.6 and 0.07

Thus z = -0.67

Now use following formula to find Q1 value:



Related Solutions

21. In a survey of women in a certain country​ (ages 20−​29), the mean height was...
21. In a survey of women in a certain country​ (ages 20−​29), the mean height was 65.8 inches with a standard deviation of 2.87 inches. Answer the following questions about the specified normal distribution. ​(a) The height that represents the 95th percentile is ___. (b) What height represents the first​ quartile? 22. The weights of bags of baby carrots are normally​ distributed, with a mean of 34 ounces and a standard deviation of 0.31 ounce. Bags in the upper​ 4.5%...
In a survey of women in a certain country​ (ages 20minus​29), the mean height was 65.6...
In a survey of women in a certain country​ (ages 20minus​29), the mean height was 65.6 inches with a standard deviation of 2.85 inches. Answer the following questions about the specified normal distribution. ​(a) What height represents the 95th ​percentile? ​(b) What height represents the first​ quartile?
In a survey of women in a certain country​ (ages 20minus​29), the mean height was 64.9...
In a survey of women in a certain country​ (ages 20minus​29), the mean height was 64.9 inches with a standard deviation of 2.81 inches. Answer the following questions about the specified normal distribution. ​(a) What height represents the 95th ​percentile? ​(b) What height represents the first​ quartile? ​(a) The height that represents the 95th percentile is nothing inches. ​(Round to two decimal places as​ needed.) ​(b) The height that represents the first quartile is nothing inches. ​(Round to two decimal...
in a survey of men in a certain country ages (20-29) the mean height was 64.6...
in a survey of men in a certain country ages (20-29) the mean height was 64.6 inches with a standard deviation of 2.8 inches. 1. the height that represents the 99th percentile is ?? inches (round to two decimals places as needed) 2. the height that represents the first quartile is ?? inches (round to two decimal places as needed)
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65​ inches? Assume σ equals=2.58. Round to four decimal places.
The mean height of women in a country? (ages 20??29) is 63.6 inches. A random sample...
The mean height of women in a country? (ages 20??29) is 63.6 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ?inches? Assume ?=2.74 The probability that the mean height for the sample is greater than 64 inches is ___ ?
The mean height of women in a country​ (ages 20-​29) is 64.1 inches. A random sample...
The mean height of women in a country​ (ages 20-​29) is 64.1 inches. A random sample of 70 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ​inches? Assume σ=2.58. The probability that the mean height for the sample is greater than 65 inches is ______ . (Round to four decimal places as​ needed.)
The mean height of women in a country​ (ages 20−​29) is 63.9 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 63.9 inches. A random sample of 75 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ​inches? Assume σ=2.75. The probability that the mean height for the sample is greater than 64 inches is
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample of 65 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ​inches? Assume σ=2.59
The height of women (ages 20 to 29) are approximaltely normally distributed with a mean of...
The height of women (ages 20 to 29) are approximaltely normally distributed with a mean of 68 inches and standard deviation of 3.8 inches. The heights of men (ages 20 to 29) are approximately normally distributed with a mean height of 71.5 inches and a standard deviation of 3.4 inches. A) Use the z- score to compare a woman that is 5 feet 7 inches and a man that is 5 feet 7 inches tall. B) If a z-score of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT