Question

In: Statistics and Probability

21. In a survey of women in a certain country​ (ages 20−​29), the mean height was...

21. In a survey of women in a certain country​ (ages 20−​29), the mean height was 65.8 inches with a standard deviation of 2.87 inches. Answer the following questions about the specified normal distribution.

​(a) The height that represents the 95th percentile is ___.

(b) What height represents the first​ quartile?

22. The weights of bags of baby carrots are normally​ distributed, with a mean of 34 ounces and a standard deviation of 0.31 ounce. Bags in the upper​ 4.5% are too heavy and must be repackaged. What is the most a bag of baby carrots can weigh and not need to be​ repackaged?

A bag of baby carrots can weigh at most ___ ounces without needing to be repackaged.

23. A mechanic sells a brand of automobile tire that has a life expectancy that is normally​ distributed, with a mean life of 35,000 miles and a standard deviation of 2800 miles. He wants to give a guarantee for free replacement of tires that​ don't wear well. How should he word his guarantee if he is willing to replace approximately​ 10% of the​ tires?

Tires that wear out by __ miles will be replaced free of charge.

24. A vending machine dispenses coffee into a sixteen​-ounce cup. The amount of coffee dispensed into the cup is normally distributed with a standard deviation of 0.07 ounce. You can allow the cup to overfill 3​% of the time. What amount should you set as the mean amount of coffee to be​ dispensed?

___ ounces.

25. In a large section of a statistics​ class, the points for the final exam are normally​ distributed, with a mean of 74 and a standard deviation of 8. Grades are assigned such that the top​ 10% receive​ A's, the next​ 20% received​ B's, the middle​40% receive​ C's, the next​ 20% receive​ D's, and the bottom​ 10% receive​ F's. Find the lowest score on the final exam that would qualify a student for an​ A, a​ B, a​ C, and a D.

The lowest score that would qualify a student for an A is ___.

Solutions

Expert Solution


Related Solutions

In a survey of women in a certain country​ (ages 20-​29), the mean height was 65.1...
In a survey of women in a certain country​ (ages 20-​29), the mean height was 65.1 inches with a standard deviation of 2.84 inches. Answer the following questions about the specified normal distribution. ​(a) What height represents the 95th ​percentile? ​(b) What height represents the first​ quartile?
In a survey of women in a certain country​ (ages 20minus​29), the mean height was 65.6...
In a survey of women in a certain country​ (ages 20minus​29), the mean height was 65.6 inches with a standard deviation of 2.85 inches. Answer the following questions about the specified normal distribution. ​(a) What height represents the 95th ​percentile? ​(b) What height represents the first​ quartile?
In a survey of women in a certain country​ (ages 20minus​29), the mean height was 64.9...
In a survey of women in a certain country​ (ages 20minus​29), the mean height was 64.9 inches with a standard deviation of 2.81 inches. Answer the following questions about the specified normal distribution. ​(a) What height represents the 95th ​percentile? ​(b) What height represents the first​ quartile? ​(a) The height that represents the 95th percentile is nothing inches. ​(Round to two decimal places as​ needed.) ​(b) The height that represents the first quartile is nothing inches. ​(Round to two decimal...
in a survey of men in a certain country ages (20-29) the mean height was 64.6...
in a survey of men in a certain country ages (20-29) the mean height was 64.6 inches with a standard deviation of 2.8 inches. 1. the height that represents the 99th percentile is ?? inches (round to two decimals places as needed) 2. the height that represents the first quartile is ?? inches (round to two decimal places as needed)
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65​ inches? Assume σ equals=2.58. Round to four decimal places.
The mean height of women in a country? (ages 20??29) is 63.6 inches. A random sample...
The mean height of women in a country? (ages 20??29) is 63.6 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ?inches? Assume ?=2.74 The probability that the mean height for the sample is greater than 64 inches is ___ ?
The mean height of women in a country​ (ages 20-​29) is 64.1 inches. A random sample...
The mean height of women in a country​ (ages 20-​29) is 64.1 inches. A random sample of 70 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ​inches? Assume σ=2.58. The probability that the mean height for the sample is greater than 65 inches is ______ . (Round to four decimal places as​ needed.)
The mean height of women in a country​ (ages 20−​29) is 63.9 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 63.9 inches. A random sample of 75 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 ​inches? Assume σ=2.75. The probability that the mean height for the sample is greater than 64 inches is
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample...
The mean height of women in a country​ (ages 20−​29) is 64.2 inches. A random sample of 65 women in this age group is selected. What is the probability that the mean height for the sample is greater than 65 ​inches? Assume σ=2.59
The height of women (ages 20 to 29) are approximaltely normally distributed with a mean of...
The height of women (ages 20 to 29) are approximaltely normally distributed with a mean of 68 inches and standard deviation of 3.8 inches. The heights of men (ages 20 to 29) are approximately normally distributed with a mean height of 71.5 inches and a standard deviation of 3.4 inches. A) Use the z- score to compare a woman that is 5 feet 7 inches and a man that is 5 feet 7 inches tall. B) If a z-score of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT