In: Statistics and Probability
An article in Cancer Research “Analyses of littermatched time-to-response data, with modifications for recovery of interlitter information,” (1977, Vol. 37, pp. 3863–3868) tested the tumorigenesis of a drug. A total of 41 rats were randomly selected from litters and given the drug. The times of tumor appearance were recorded as follows: 101, 104, 104, 77, 89, 88, 104, 96, 82, 70, 89, 91, 39, 103, 93, 85, 104, 104, 81, 67, 104, 104, 104, 87, 104, 89, 78, 104, 86, 76, 103, 102, 80, 45, 94, 104, 104, 76, 80, 72, 73 Calculate a 95% confidence interval on the standard deviation of time until a tumor appearance. Assume population is approximately normally distributed. Round your answers to 2 decimal places.
Values ( X ) | Σ ( Xi- X̅ )2 | |
101 | 149.3162 | |
104 | 231.6332 | |
104 | 231.6332 | |
77 | 138.7802 | |
89 | 0.0482 | |
88 | 0.6092 | |
104 | 231.6332 | |
96 | 52.1212 | |
82 | 45.9752 | |
70 | 352.7072 | |
89 | 0.0482 | |
91 | 4.9262 | |
39 | 2478.0982 | |
103 | 202.1942 | |
93 | 17.8042 | |
85 | 14.2922 | |
104 | 231.6332 | |
104 | 231.6332 | |
81 | 60.5362 | |
67 | 474.3902 | |
104 | 231.6332 | |
104 | 231.6332 | |
104 | 231.6332 | |
87 | 3.1702 | |
104 | 231.6332 | |
89 | 0.0482 | |
78 | 116.2192 | |
104 | 231.6332 | |
86 | 7.7312 | |
76 | 163.3412 | |
103 | 202.1942 | |
102 | 174.7552 | |
80 | 77.0972 | |
45 | 1916.7322 | |
94 | 27.2432 | |
104 | 231.6332 | |
104 | 231.6332 | |
76 | 163.3412 | |
80 | 77.0972 | |
72 | 281.5852 | |
73 | 249.0242 | |
Total | 3640 | 10231.0252 |
Mean X̅ = Σ Xi / n
X̅ = 3640 / 41 = 88.7805
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 10231.0252 / 41 -1 ) = 15.993
χ2 (0.05/2, 41 - 1) = 59.3417
χ2 (1 - 0.05/2) , 41 - 1 ) = 24.433
Lower Limit = (( 41-1 ) 255.776 / χ2 (0.05/2) ) =
172.4089
Upper Limit = (( 41-1 ) 255.776 / χ2 (0.05/2) ) =
418.7386
95% Confidence interval is ( 172.4089 , 418.7386
)
95% Confidence interval for standard deviation
is ( 13.13 < σ < 20.46 ).