In: Statistics and Probability
(1). Find the variance and standard deviation of the response time data. Treat it as a sample from a larger population. [0.12,0.3, 0.35,0.37,0.44,0.57,0.61,0.62,0.71,0.8,0.88,1.02,1.08,1.12,1.13,1.17,1.21,1.23,1.35,1.41,1.42,1.42,1.46,1.5,1.52,1.54,1.6,1.61,1.68,1.72,1.86,1.9,1.91,2.07,2.09,2.16,2.17,2.2,2.29,2.32,2.39,2.47,2.6,2.86,3.43,3.43,3.77,3.97,4.54,4.73]
(2). Find the interquartile range and the median absolute deviation for the response time data.
(3). In the response time data, replace the value X40=2.32 by 232.0. Recalculate the standard deviation, the interquartile range and the median absolute deviation and compare with the answers from problems 1 and
1. Mean for the given data is
Create the following table.
data | data-mean | (data - mean)2 |
0.12 | -1.6224 | 2.63218176 |
0.3 | -1.4424 | 2.08051776 |
0.35 | -1.3924 | 1.93877776 |
0.37 | -1.3724 | 1.88348176 |
0.44 | -1.3024 | 1.69624576 |
0.57 | -1.1724 | 1.37452176 |
0.61 | -1.1324 | 1.28232976 |
0.62 | -1.1224 | 1.25978176 |
0.71 | -1.0324 | 1.06584976 |
0.8 | -0.9424 | 0.88811776 |
0.88 | -0.8624 | 0.74373376 |
1.02 | -0.7224 | 0.52186176 |
1.08 | -0.6624 | 0.43877376 |
1.12 | -0.6224 | 0.38738176 |
1.13 | -0.6124 | 0.37503376 |
1.17 | -0.5724 | 0.32764176 |
1.21 | -0.5324 | 0.28344976 |
1.23 | -0.5124 | 0.26255376 |
1.35 | -0.3924 | 0.15397776 |
1.41 | -0.3324 | 0.11048976 |
1.42 | -0.3224 | 0.10394176 |
1.42 | -0.3224 | 0.10394176 |
1.46 | -0.2824 | 0.07974976 |
1.5 | -0.2424 | 0.05875776 |
1.52 | -0.2224 | 0.04946176 |
1.54 | -0.2024 | 0.04096576 |
1.6 | -0.1424 | 0.02027776 |
1.61 | -0.1324 | 0.01752976 |
1.68 | -0.0624 | 0.00389376 |
1.72 | -0.0224 | 0.00050176 |
1.86 | 0.1176 | 0.01382976 |
1.9 | 0.1576 | 0.02483776 |
1.91 | 0.1676 | 0.02808976 |
2.07 | 0.3276 | 0.10732176 |
2.09 | 0.3476 | 0.12082576 |
2.16 | 0.4176 | 0.17438976 |
2.17 | 0.4276 | 0.18284176 |
2.2 | 0.4576 | 0.20939776 |
2.29 | 0.5476 | 0.29986576 |
2.32 | 0.5776 | 0.33362176 |
2.39 | 0.6476 | 0.41938576 |
2.47 | 0.7276 | 0.52940176 |
2.6 | 0.8576 | 0.73547776 |
2.86 | 1.1176 | 1.24902976 |
3.43 | 1.6876 | 2.84799376 |
3.43 | 1.6876 | 2.84799376 |
3.77 | 2.0276 | 4.11116176 |
3.97 | 2.2276 | 4.96220176 |
4.54 | 2.7976 | 7.82656576 |
4.73 | 2.9876 | 8.92575376 |
Find the sum of numbers in the last column to get.
Calculate variance
b. The first quartile (or lower quartile or 25th percentile) is the median of the bottom half of the numbers. So, to find the first quartile, we need to place the numbers in value order and find the bottom half.
0.12 0.3 0.35 0.37 0.44 0.57 0.61 0.62 0.71 0.8 0.88 1.02 1.08 1.12 1.13 1.17 1.21 1.23 1.35 1.41 1.42 1.42 1.46 1.5 1.52 1.54 1.6 1.61 1.68 1.72 1.86 1.9 1.91 2.07 2.09 2.16 2.17 2.2 2.29 2.32 2.39 2.47 2.6 2.86 3.43 3.43 3.77 3.97 4.54 4.73
So, the bottom half is
0.12 0.3 0.35 0.37 0.44 0.57 0.61 0.62 0.71 0.8 0.88 1.02 1.08 1.12 1.13 1.17 1.21 1.23 1.35 1.41 1.42 1.42 1.46 1.5 1.52
The median of these numbers is 1.08.
The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.
Ordering the data from least to greatest, we get:
0.12 0.3 0.35 0.37 0.44 0.57 0.61 0.62 0.71 0.8 0.88 1.02 1.08 1.12 1.13 1.17 1.21 1.23 1.35 1.41 1.42 1.42 1.46 1.5 1.52 1.54 1.6 1.61 1.68 1.72 1.86 1.9 1.91 2.07 2.09 2.16 2.17 2.2 2.29 2.32 2.39 2.47 2.6 2.86 3.43 3.43 3.77 3.97 4.54 4.73
As you can see, we do not have just one middle number but we have a pair of middle numbers, so the median is the average of these two numbers:
Median=
The third quartile (or upper quartile or 75th percentile) is the median of the upper half of the numbers. So, to find the third quartile, we need to place the numbers in value order and find the upper half.
0.12 0.3 0.35 0.37 0.44 0.57 0.61 0.62 0.71 0.8 0.88 1.02 1.08 1.12 1.13 1.17 1.21 1.23 1.35 1.41 1.42 1.42 1.46 1.5 1.52 1.54 1.6 1.61 1.68 1.72 1.86 1.9 1.91 2.07 2.09 2.16 2.17 2.2 2.29 2.32 2.39 2.47 2.6 2.86 3.43 3.43 3.77 3.97 4.54 4.73
So, the upper half is
1.54 1.6 1.61 1.68 1.72 1.86 1.9 1.91 2.07 2.09 2.16 2.17 2.2 2.29 2.32 2.39 2.47 2.6 2.86 3.43 3.43 3.77 3.97 4.54 4.73
The median of these numbers is 2.2.
The interquartile range is the difference between the third and first quartiles.
The third quartile is 2.2.
The first quartile is 1.08.
The interquartile range = 2.2 - 1.08 = 1.12.
Mean Absolute Deviation
c. Replacing the value X40=2.32 by 232.0
Create the following table.
data | data-mean | (data - mean)2 |
0.12 | -6.216 | 38.638656 |
0.3 | -6.036 | 36.433296 |
0.35 | -5.986 | 35.832196 |
0.37 | -5.966 | 35.593156 |
0.44 | -5.896 | 34.762816 |
0.57 | -5.766 | 33.246756 |
0.61 | -5.726 | 32.787076 |
0.62 | -5.716 | 32.672656 |
0.71 | -5.626 | 31.651876 |
0.8 | -5.536 | 30.647296 |
0.88 | -5.456 | 29.767936 |
1.02 | -5.316 | 28.259856 |
1.08 | -5.256 | 27.625536 |
1.12 | -5.216 | 27.206656 |
1.13 | -5.206 | 27.102436 |
1.17 | -5.166 | 26.687556 |
1.21 | -5.126 | 26.275876 |
1.23 | -5.106 | 26.071236 |
1.35 | -4.986 | 24.860196 |
1.41 | -4.926 | 24.265476 |
1.42 | -4.916 | 24.167056 |
1.42 | -4.916 | 24.167056 |
1.46 | -4.876 | 23.775376 |
1.5 | -4.836 | 23.386896 |
1.52 | -4.816 | 23.193856 |
1.54 | -4.796 | 23.001616 |
1.6 | -4.736 | 22.429696 |
1.61 | -4.726 | 22.335076 |
1.68 | -4.656 | 21.678336 |
1.72 | -4.616 | 21.307456 |
1.86 | -4.476 | 20.034576 |
1.9 | -4.436 | 19.678096 |
1.91 | -4.426 | 19.589476 |
2.07 | -4.266 | 18.198756 |
2.09 | -4.246 | 18.028516 |
2.16 | -4.176 | 17.438976 |
2.17 | -4.166 | 17.355556 |
2.2 | -4.136 | 17.106496 |
2.29 | -4.046 | 16.370116 |
232 | 225.664 | 50924.240896 |
2.39 | -3.946 | 15.570916 |
2.47 | -3.866 | 14.945956 |
2.6 | -3.736 | 13.957696 |
2.86 | -3.476 | 12.082576 |
3.43 | -2.906 | 8.444836 |
3.43 | -2.906 | 8.444836 |
3.77 | -2.566 | 6.584356 |
3.97 | -2.366 | 5.597956 |
4.54 | -1.796 | 3.225616 |
4.73 | -1.606 | 2.579236 |
The first quartile (or lower quartile or 25th percentile) is the median of the bottom half of the numbers. So, to find the first quartile, we need to place the numbers in value order and find the bottom half.
0.12 0.3 0.35 0.37 0.44 0.57 0.61 0.62 0.71 0.8 0.88 1.02 1.08 1.12 1.13 1.17 1.21 1.23 1.35 1.41 1.42 1.42 1.46 1.5 1.52 1.54 1.6 1.61 1.68 1.72 1.86 1.9 1.91 2.07 2.09 2.16 2.17 2.2 2.29 2.39 2.47 2.6 2.86 3.43 3.43 3.77 3.97 4.54 4.73 232
So, the bottom half is
0.12 0.3 0.35 0.37 0.44 0.57 0.61 0.62 0.71 0.8 0.88 1.02 1.08 1.12 1.13 1.17 1.21 1.23 1.35 1.41 1.42 1.42 1.46 1.5 1.52
The median of these numbers is 1.08.
The median is the middle number in a sorted list of numbers. So, to find the median, we need to place the numbers in value order and find the middle number.
Ordering the data from least to greatest, we get:
0.12 0.3 0.35 0.37 0.44 0.57 0.61 0.62 0.71 0.8 0.88 1.02 1.08 1.12 1.13 1.17 1.21 1.23 1.35 1.41 1.42 1.42 1.46 1.5 1.52 1.54 1.6 1.61 1.68 1.72 1.86 1.9 1.91 2.07 2.09 2.16 2.17 2.2 2.29 2.39 2.47 2.6 2.86 3.43 3.43 3.77 3.97 4.54 4.73 232
As you can see, we do not have just one middle number but we have a pair of middle numbers, so the median is the average of these two numbers:
Median=
The third quartile (or upper quartile or 75th percentile) is the median of the upper half of the numbers. So, to find the third quartile, we need to place the numbers in value order and find the upper half.
0.12 0.3 0.35 0.37 0.44 0.57 0.61 0.62 0.71 0.8 0.88 1.02 1.08 1.12 1.13 1.17 1.21 1.23 1.35 1.41 1.42 1.42 1.46 1.5 1.52 1.54 1.6 1.61 1.68 1.72 1.86 1.9 1.91 2.07 2.09 2.16 2.17 2.2 2.29 2.39 2.47 2.6 2.86 3.43 3.43 3.77 3.97 4.54 4.73 232
So, the upper half is
1.54 1.6 1.61 1.68 1.72 1.86 1.9 1.91 2.07 2.09 2.16 2.17 2.2 2.29 2.39 2.47 2.6 2.86 3.43 3.43 3.77 3.97 4.54 4.73 232
The median of these numbers is 2.2.
The interquartile range is the difference between the third and first quartiles.
The third quartile is 2.2.
The first quartile is 1.08.
The interquartile range = 2.2 - 1.08 = 1.12.
Median absolute deviation is
We can see thqat adding outlier will increase the variation abmong the variables.