In: Statistics and Probability
How to simulate independent binary response for GEE in R?
set.seed(123) # sample size sample_size <- 100 # cluster size cluster_size <- 4 # intercept beta_intercepts <- 0 # regression parameter associated with the covariate beta_coefficients <- 0.2 # correlation matrix for the NORTA method latent_correlation_matrix <- toeplitz(c(1, 0.9, 0.9, 0.9)) # time-stationary covariate x <- rep(rnorm(sample_size), each = cluster_size) # simulation of clustered binary responses simulated_binary_dataset <- rbin(clsize = cluster_size, intercepts = beta_intercepts, betas = beta_coefficients, xformula = ~x, cor.matrix = latent_correlation_matrix, link = "probit") library(gee) # fitting a GEE model binary_gee_model <- gee(y ~ x, family = binomial("probit"), id = id, data = simulated_binary_dataset$simdata) #> Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27 #> running glm to get initial regression estimate #> (Intercept) x #> 0.1315121 0.2826005 # checking the estimated coefficients summary(binary_gee_model)$coefficients #> Estimate Naive S.E. Naive z Robust S.E. Robust z #> (Intercept) 0.1315121 0.06399465 2.055048 0.1106696 1.188331 #> x 0.2826006 0.07191931 3.929412 0.1270285 2.224703