Question

In: Statistics and Probability

Conduct the following test at the a=0.10 level of significance by determining ​ (a) the null...

Conduct the following test at the a=0.10 level of significance by determining

​ (a) the null and alternative​ hypotheses,

(b) the test​ statistic

(c) the critical value. Assume that the samples were obtained independently using simple random sampling.

Test whether  p1≠p2. Sample data are x 1 = 28, n 1= 254, x 2 = 36, and n 2= 301

Solutions

Expert Solution

Solution:

a)

The  null and alternative​ hypotheses are

H0 :   = vs Ha :     

b)

1 = x1 / n1 = 28/254 = 0.1102

2 = x2 / n2 = 36/301 = 0.1196

Let be the pooled proportion.

= (x1 +x2)/(n1 + n2) = (28+36)/(254+301) = 0.1153

1 - = 1 - 0.1153 = 0.8847

The test statistic z is

z =  

   = (0.1102 - 0.1196)/[0.1153*0.8847*((1/254)+(1/301))]

= -0.345

Test statistic z = -0.345

c)

= 0.10

/2 = 0.05

sign in Ha.

So , the test is TWO tailed.

So , critical values are

Critical values are -1.645 , 1.645

d)

Decision:

Fail to reject H0

(Because z = -0.345 is not in the rejection region.)

e)

Conclusion:

There is not sufficient evidence to support the claim that    


Related Solutions

Conduct the following test at the a=0.10 level of significance by determining (a) the null and...
Conduct the following test at the a=0.10 level of significance by determining (a) the null and alternative hypothesis, (b) the test statistic, and (c) the P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1 is not equal p2. Sample data are x1=30, n1=255, x2=36, and n2=301 (a) Determine the null and alternative hypotheses. A) H0: p1=p2 versus H1: p1<p2 B)H0: p1=0 versus H1: p1=0 C) H0: p1=p2 versus H1: p1 =/ (not equal) p2...
Conduct the following test at the α =0.10 level of significance by determining ​(a) the null...
Conduct the following test at the α =0.10 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28 n1=255​, x2=36​, and n2=301.
Conduct a test at the α equals=0.10 level of significance by determining ​(a) the null and...
Conduct a test at the α equals=0.10 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume the samples were obtained independently from a large population using simple random sampling.Test whether p1 > p2. The sample data are x1=118​, n1=249​, x2=142​, and n2=315.
Conduct the following test at the alphaequals0.01 level of significance by determining ​(a) the null and...
Conduct the following test at the alphaequals0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p 1 not equals p 2. Sample data are x 1 equals 28​, n 1 equals 254​, x 2 equals 38​, and n 2 equals 302. ​(a) Determine the null and alternative hypotheses. Choose the correct answer below. A. Upper H...
Conduct the following test at the alpha equals 0.10 level of significance by determining ​(a) the...
Conduct the following test at the alpha equals 0.10 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p 1 not equals p 2. Sample data are x (1) equals 30​, n (1) equals 254​, x (2) equals 36​, and n (2) equals 302.
Conduct a test at the a = 0.05 level of significance by determining (a) the null...
Conduct a test at the a = 0.05 level of significance by determining (a) the null and alternative hypotheses (b) the test statistic (c) the critical value, and (d) the P-value. Assume that the samples were obtained independently using simple random sampling. 1. Test whether p1 is not equal to p2. Sample data: x1 = 804, n1 = 874, x2 = 902, n2 = 954
Conduct the following test at the α=0.01 level of significance by determining ​(a) the null and...
Conduct the following test at the α=0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28​, n1=254​, x2=36​,and n2=302. ​(a) Determine the null and alternative hypotheses. Choose the correct answer below. A. H0: p1=p2 versus H1: p1>p2 B. H0: p1=p2 versus H1: p1<p2 C. H0: p1=p2 versus H1: p1≠p2 D. H0: p1=0...
Conduct the following test at the α=0.01 level of significance by determining ​(a) the null and...
Conduct the following test at the α=0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28​, n1=254​, x2=36​,and n2=302. ​(a) Determine the null and alternative hypotheses. Choose the correct answer below. A. H0: p1=p2 versus H1: p1>p2 B. H0: p1=p2 versus H1: p1<p2 C. H0: p1=p2 versus H1: p1≠p2 D. H0: p1=0...
Conduct the following test at the alphaαequals=0.050.05 level of significance by determining ​(a) the null and...
Conduct the following test at the alphaαequals=0.050.05 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28​, n1=255​, x2=36​, and n2=301.
Conduct the following test at the alphaαequals=0.050.05 level of significance by determining ​(a) the null and...
Conduct the following test at the alphaαequals=0.050.05 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28​, n1=255​, x2=36​, and n2=301.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT