Question

In: Statistics and Probability

Conduct a test at the a = 0.05 level of significance by determining (a) the null...

Conduct a test at the a = 0.05 level of significance by determining (a) the null and alternative hypotheses (b) the test statistic (c) the critical value, and (d) the P-value. Assume that the samples were obtained independently using simple random sampling.

1. Test whether p1 is not equal to p2. Sample data: x1 = 804, n1 = 874, x2 = 902, n2 = 954

Solutions

Expert Solution

1. Test whether p1 is not equal to p2. Sample data: x1 = 804, n1 = 874, x2 = 902, n2 = 954

a) Null hypothesis :Ho : p1 = p2

Alterrnative Hypothesis: Ha: p1 p2

=0.05

Two tailed test.

b) Method 1 : individual proportions

: : Sample Propotion of Sample 1 = x1/n1 = 804/874 = 0.9199

: Sample Propotion of Sample 2 = x2/n2 = 902/954 = 0.9455

c) Critical value :

For two tailed test : Critical value = Z/2 = Z0.025 = 1.96

As Value of the test statistic Z is less than Critical Value i.e. ( -2.1767<-1.96 ); Reject Null Hypothesis

d)p-value

For two tailed test :

p(Z<-2.1767) = 0.0148

p-value = 2 x 0.0148 = 0.0296

As P-Value i.e. is less than Level of significance i.e (P-value:0.0296 < 0.05:Level of significance); Reject Null Hypothesis

------------------------------------------------------------------

a) Null hypothesis :Ho : p1 = p2

Alterrnative Hypothesis: Ha: p1 p2

=0.05

Two tailed test.

b) Method 2 : pooled proportions

: : Sample Propotion of Sample 1 = x1/n1 = 804/874 = 0.9199

: Sample Propotion of Sample 2 = x2/n2 = 902/954 = 0.9455

c) Critical value :

For two tailed test : Critical value = Z/2 = Z0.025 = 1.96

As Value of the test statistic Z is less than Critical Value i.e. ( -2.1767<-1.96 ); Reject Null Hypothesis

d)p-value

For two tailed test :

p(Z<-2.1913) = 0.0142

p-value = 2 x 0.0142 = 0.0284

As P-Value i.e. is less than Level of significance i.e (P-value:0.0284 < 0.05:Level of significance); Reject Null Hypothesis


Related Solutions

Conduct a test at the α=0.05 level of significance by determining ​(a) the null and alternative​...
Conduct a test at the α=0.05 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p1>p2. The sample data are x1=118​, n1=251​, x2=144​, and n2=312. ​(a) Choose the correct null and alternative hypotheses below. A. H0: p1=p2 versus H1: p1<p2 B. H0: p1=0 versus H1: p1≠0 C. H0: p1=p2 versus H1: p1>p2 D. H0:...
Conduct the following test at the alphaequals0.01 level of significance by determining ​(a) the null and...
Conduct the following test at the alphaequals0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p 1 not equals p 2. Sample data are x 1 equals 28​, n 1 equals 254​, x 2 equals 38​, and n 2 equals 302. ​(a) Determine the null and alternative hypotheses. Choose the correct answer below. A. Upper H...
Conduct a test at the alphaequals0.05 level of significance by determining ?(a) the null and alternative?...
Conduct a test at the alphaequals0.05 level of significance by determining ?(a) the null and alternative? hypotheses, ?(b) the test? statistic, and? (c) the? P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p 1 greater than p 2. The sample data are x 1 equals 117?, n 1 equals 243?, x 2 equals 138?, and n 2 equals 303.
Conduct a test at the alpha equals0.01 level of significance by determining ​(a) the null and...
Conduct a test at the alpha equals0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p 1 greater than p 2 . The sample data are x 1 equals 126 ​, n 1 equals 242 ​, x 2 equals 131 ​, and n 2 equals 313 . (a) Choose the correct null and...
Conduct a test at the alphaequals0.05 level of significance by determining ​(a) the null and alternative​...
Conduct a test at the alphaequals0.05 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p 1 greater than p 2. The sample data are x 1 equals 125​, n 1 equals 247​, x 2 equals 132​, and n 2 equals 312. ​(a) Choose the correct null and alternative hypotheses below. A. Upper H...
Conduct a test at the alphaequals0.05 level of significance by determining ?(a) the null and alternative?...
Conduct a test at the alphaequals0.05 level of significance by determining ?(a) the null and alternative? hypotheses, ?(b) the test? statistic, and? (c) the? P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p 1 greater than p 2. The sample data are x 1 equals 124?, n 1 equals 257?, x 2 equals 141?, and n 2 equals 318.
Conduct the following test at the a=0.10 level of significance by determining (a) the null and...
Conduct the following test at the a=0.10 level of significance by determining (a) the null and alternative hypothesis, (b) the test statistic, and (c) the P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1 is not equal p2. Sample data are x1=30, n1=255, x2=36, and n2=301 (a) Determine the null and alternative hypotheses. A) H0: p1=p2 versus H1: p1<p2 B)H0: p1=0 versus H1: p1=0 C) H0: p1=p2 versus H1: p1 =/ (not equal) p2...
Conduct a test at the a=0.01 level of significance by determining ​(a) the null and alternative​...
Conduct a test at the a=0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p1>p2. The sample data are x1=116, n1= 252​,x2=142​, and n2=303. a. Choose the correct null and alternative hypotheses below. A. H0: p1= p 2 versus H1: p1 > p 2 B. H0 : p1=p2 versus H1: p1≠p2 C. H0:...
Conduct a test at the alphaequals0.01 level of significance by determining ​(a) the null and alternative​...
Conduct a test at the alphaequals0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p 1 greater than p 2. The sample data are x 1 equals 126​, n 1 equals 241​, x 2 equals 131​, and n 2 equals 302. ​(a) Choose the correct null and alternative hypotheses below. A. Upper H...
Conduct the following test at the a=0.10 level of significance by determining ​ (a) the null...
Conduct the following test at the a=0.10 level of significance by determining ​ (a) the null and alternative​ hypotheses, (b) the test​ statistic (c) the critical value. Assume that the samples were obtained independently using simple random sampling. Test whether  p1≠p2. Sample data are x 1 = 28, n 1= 254, x 2 = 36, and n 2= 301
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT