Question

In: Statistics and Probability

Conduct the following test at the alphaαequals=0.050.05 level of significance by determining ​(a) the null and...

Conduct the following test at the alphaαequals=0.050.05 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28​, n1=255​, x2=36​, and n2=301.

Solutions

Expert Solution

To Test :-

H0 :- P1 = P2

H1 :- p1≠p2



Test Statistic :-

is the pooled estimate of the proportion P
= ( x1 + x2) / ( n1 + n2)
= ( 28 + 36 ) / ( 255 + 301 )
= 0.1151

Z = -0.36


Test Criteria :-
Reject null hypothesis if

= -0.36 > -1.96, hence we fail to reject the null hypothesis
Conclusion :- We Fail to Reject H0


Decision based on P value
P value = 2 * P ( Z < -0.36 )
P value = 0.7188
Reject null hypothesis if P value <
Since P value = 0.7188 > 0.05, hence we fail to reject the null hypothesis
Conclusion :- We Fail to Reject H0

There is insufficient evidence to support the claim that  p1≠p2.


Related Solutions

Conduct the following test at the alphaαequals=0.050.05 level of significance by determining ​(a) the null and...
Conduct the following test at the alphaαequals=0.050.05 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28​, n1=255​, x2=36​, and n2=301.
Conduct a test at the alphaαequals=0.01 level of significance by determining ​(a) the null and alternative​...
Conduct a test at the alphaαequals=0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume the samples were obtained independently from a large population using simple random sampling.Test whether p 1 greater than p 2p1>p2. The sample data are x1=118​, n1=259​, x2=141​, and n2=313. ​(a) Choose the correct null and alternative hypotheses below. A. Upper H 0 : p 1 equals p 2H0: p1=p2 versus Upper H 1 :...
Conduct the following test at the alphaequals0.01 level of significance by determining ​(a) the null and...
Conduct the following test at the alphaequals0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p 1 not equals p 2. Sample data are x 1 equals 28​, n 1 equals 254​, x 2 equals 38​, and n 2 equals 302. ​(a) Determine the null and alternative hypotheses. Choose the correct answer below. A. Upper H...
Conduct the following test at the a=0.10 level of significance by determining (a) the null and...
Conduct the following test at the a=0.10 level of significance by determining (a) the null and alternative hypothesis, (b) the test statistic, and (c) the P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1 is not equal p2. Sample data are x1=30, n1=255, x2=36, and n2=301 (a) Determine the null and alternative hypotheses. A) H0: p1=p2 versus H1: p1<p2 B)H0: p1=0 versus H1: p1=0 C) H0: p1=p2 versus H1: p1 =/ (not equal) p2...
Conduct the following test at the a=0.10 level of significance by determining ​ (a) the null...
Conduct the following test at the a=0.10 level of significance by determining ​ (a) the null and alternative​ hypotheses, (b) the test​ statistic (c) the critical value. Assume that the samples were obtained independently using simple random sampling. Test whether  p1≠p2. Sample data are x 1 = 28, n 1= 254, x 2 = 36, and n 2= 301
Conduct a test at the a = 0.05 level of significance by determining (a) the null...
Conduct a test at the a = 0.05 level of significance by determining (a) the null and alternative hypotheses (b) the test statistic (c) the critical value, and (d) the P-value. Assume that the samples were obtained independently using simple random sampling. 1. Test whether p1 is not equal to p2. Sample data: x1 = 804, n1 = 874, x2 = 902, n2 = 954
Conduct the following test at the α=0.01 level of significance by determining ​(a) the null and...
Conduct the following test at the α=0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28​, n1=254​, x2=36​,and n2=302. ​(a) Determine the null and alternative hypotheses. Choose the correct answer below. A. H0: p1=p2 versus H1: p1>p2 B. H0: p1=p2 versus H1: p1<p2 C. H0: p1=p2 versus H1: p1≠p2 D. H0: p1=0...
Conduct the following test at the α=0.01 level of significance by determining ​(a) the null and...
Conduct the following test at the α=0.01 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28​, n1=254​, x2=36​,and n2=302. ​(a) Determine the null and alternative hypotheses. Choose the correct answer below. A. H0: p1=p2 versus H1: p1>p2 B. H0: p1=p2 versus H1: p1<p2 C. H0: p1=p2 versus H1: p1≠p2 D. H0: p1=0...
Conduct the following test at the α =0.10 level of significance by determining ​(a) the null...
Conduct the following test at the α =0.10 level of significance by determining ​(a) the null and alternative​ hypotheses, ​(b) the test​ statistic, and​ (c) the​ P-value. Assume that the samples were obtained independently using simple random sampling. Test whether p1≠p2. Sample data are x1=28 n1=255​, x2=36​, and n2=301.
Conduct a test at the alphaequals0.05 level of significance by determining ?(a) the null and alternative?...
Conduct a test at the alphaequals0.05 level of significance by determining ?(a) the null and alternative? hypotheses, ?(b) the test? statistic, and? (c) the? P-value. Assume the samples were obtained independently from a large population using simple random sampling. Test whether p 1 greater than p 2. The sample data are x 1 equals 117?, n 1 equals 243?, x 2 equals 138?, and n 2 equals 303.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT