Question

In: Chemistry

Calculate the mass percent (m/m) of a solution prepared by dissolving 49.94 gg of NaClNaCl in...

Calculate the mass percent (m/m) of a solution prepared by dissolving 49.94 gg of NaClNaCl in 173.6 gg of H2OH2O.

Express your answer to four significant figures.

Vinegar is a solution of acetic acid in water. If a 125 mLmL bottle of distilled vinegar contains 27.6 mLmL of acetic acid, what is the volume percent (v/v) of the solution?

Express your answer to three significant figures.

Calculate the mass/volume percent (m/v) of 20.5 gg NaClNaCl in 60.5 mLmL of solution.

Express your answer to three significant figures.

Solutions

Expert Solution


Related Solutions

A. Calculate the mass percent (m/m) of a solution prepared by dissolving 51.22 g of NaCl...
A. Calculate the mass percent (m/m) of a solution prepared by dissolving 51.22 g of NaCl in 151.9 g of H2O. B. Vinegar is a solution of acetic acid in water. If a 265 mL bottle of distilled vinegar contains 19.2 mL of acetic acid, what is the volume percent (v/v) of the solution? C. Calculate the mass/volume percent (m/v) of 20.5 g NaCl in 75.0 mL of solution. D. Calculate the molarity (M) of 155.2 g of H2SO4 in...
A. Calculate the concentrations of K1 and NO3 2 in an aqueous solution prepared by dissolving...
A. Calculate the concentrations of K1 and NO3 2 in an aqueous solution prepared by dissolving 30.3 g KNO3 in enough water to make 300. mL of solution. B. Calculate the concentrations of Al13 and SO4 22 in an aqueous solution prepared by dissolving 17.1 g Al2 (SO4 ) 3 in enough water to make 400. mL of solution. C. Calculate the concentrations of Na1 and SO4 22 in an aqueous solution prepared by dissolving 852 g Na2 SO4 in...
Calculate the [Ag+] in a solution prepared by dissolving 1.00g of AgNO3 and 10.0g KCN in...
Calculate the [Ag+] in a solution prepared by dissolving 1.00g of AgNO3 and 10.0g KCN in enough water to make a 1.00 L of solution Kf[Ag(CN)2]1-=1.0 x 1021 Answer: [Ag+] = 2.9 x 10-22M
A solution is prepared by dissolving 12.36 g of CaCl2 ( an electrolyte, molar mass= 111g)...
A solution is prepared by dissolving 12.36 g of CaCl2 ( an electrolyte, molar mass= 111g) in 135g of H2O ( molar mass =18.0g). The resulting solution has a density of 1.10 g/ml. Calculate the molarity of CaCl2 in the solution.
A solution was prepared by dissolving 29.0g KCl in 225 g of water. 1) Calculate the...
A solution was prepared by dissolving 29.0g KCl in 225 g of water. 1) Calculate the mass percent of KCl in the solution. 2)Calculate the mole fraction of the ionic species KCl in the solution. 3) Calculate the molarity of KCl in the solution if the total volume of the solution is 239 mL. 4) Calculate the molarity of KCl in the solution.
Calculate the concentration of an iodate solution prepared by dissolving 1.9853 g of KIO3 and diluting...
Calculate the concentration of an iodate solution prepared by dissolving 1.9853 g of KIO3 and diluting to 500 mL with distilled water in a volumetric flask. A 25 mL aliquot of a 0.0195 M KIO3 solution is added to a flask containing 2 g of KI and 10 mL of 0.5 M H2SO4. The resulting solution is titrated to a starch endpoint with 34.81 mL of the thiosulfate solution. Calculate the concentration of the thiosulfate solution. How will you know...
calculate the concentration of a solution prepared by dissolving 35.0 g of aluminum carbonate in enough...
calculate the concentration of a solution prepared by dissolving 35.0 g of aluminum carbonate in enough water to prepare 500.0 mL of solution
Calculate the vapor pressure of a solution prepared by dissolving 0.50mol of nonvolatile solute in 275g...
Calculate the vapor pressure of a solution prepared by dissolving 0.50mol of nonvolatile solute in 275g of hexane (molar mass=86.18g/mol) at 49.6C. (The vapor pressure of pure hexane at 49.6C is 400.0 mmHg)
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate:...
A solution of sucrose is prepared by dissolving 0.5 g in 100 g of water. Calculate: a. Percent weight in weight b. The molal concentration of sucrose and water c. The mole fraction of sucrose and water in the solution
Calculate the freezing point of a solution containing 13.2 gg FeCl3FeCl3 in 159 gg water. Calculate...
Calculate the freezing point of a solution containing 13.2 gg FeCl3FeCl3 in 159 gg water. Calculate the boiling point of the solution above. Calculate the freezing point of a solution containing 5.9 %% KClKCl by mass (in water). Calculate the boiling point of the solution above. Calculate the freezing point of a solution containing 0.151m MgF2 Calculate the boiling point of the solution above.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT