Question

In: Chemistry

In the reaction of 4.3 g of H2 and 6.11 g of O2, 2.4 g of...

In the reaction of 4.3 g of H2 and 6.11 g of O2, 2.4 g of water was isolated. what is the percent yield of the water?

*** PLEASE SHOW HOW YOU GET THE ANSWER***

Solutions

Expert Solution

The reaction is as follows

2H2 + O2 2H2O

So, 2 mole hydrogen will react with1 mole oxygen to produce 2 mole water

Then, 2 x 2 g hydrogen will react with 32 g oxygen to produce 2 x 18 g water (MW of O2 is 32)

So, 4 g hydrogen will react with 32 g oxygen to produce 36 g water

When , 4.3 g hydrogen is mixed with 6.11 g oxygen to produce water. then oxygen will be the limiting reagent which will consumed fully.

Now, 32 g oxygen react with 4 g hydrogen to produce  36 g water

So, 6.11 g oxygen will produce (36 x 6.11 / 32 ) = 6.8737 g water

Then theoritical yield of the reaction = 6.87 g of water

But, actual yield is 2.4 g water

So, percent yiled of the reaction = actual yield / theoritical yield x 100

= ( 2.4 / 6.87 ) x 100

= 34.93 % (ANSWER)


Related Solutions

Consider this reaction: H2(g) +    O2 (g)     à       H2O (g)                       &nbsp
Consider this reaction: H2(g) +    O2 (g)     à       H2O (g)                                          dHo = __________ Balance the equation and put the correct number of moles in the equation above. (1 point) Classify the forward reaction as (1) Combustion, (2) Decomposition, (3) Single replacement, (4) Double replacement, (5) Neutralization, (6) Synthesis. Circle the correct answer. (1 point) In this reaction did Hydrogen get oxidized or reduced? Circle the correct answer. (1 point) Based on your answer above is Hydrogen an...
At 2000 ∘C the equilibrium constant for the reaction 2NO(g)←−→N2(g)+O2(g) is Kc=2.4×103. The initial concentration of...
At 2000 ∘C the equilibrium constant for the reaction 2NO(g)←−→N2(g)+O2(g) is Kc=2.4×103. The initial concentration of NO is 0.250 M . Part A What is the equilibrium concentration of NO? Part B What is the equilibrium concentration of N2? Part C What is the equilibrium concentration of O2? Please show me how to got your results :) Thank you!
A.) For which reaction will Kp = Kc? 2 H2O(l) ↔ 2 H2(g) + O2(g) 2...
A.) For which reaction will Kp = Kc? 2 H2O(l) ↔ 2 H2(g) + O2(g) 2 HgO(s) ↔ Hg(l) + O2(g) S(s) + O2(g) ↔ SO2(g) H2CO3(s) ↔ H2O(l) + CO2(g) CaCO3(s) ↔ CaO(s) + CO2(g) B.) How does an increase in the pressure within the container by the addition of the inert gas E affect the amount of C present at equilibrium for the following reaction? A(g) + 3 B(g) ↔ 2 C(g) + D(g)           ΔH° = -65 kJ...
The reaction                                     NO(g) + O3 -> NO2(g) + O2(g
The reaction                                     NO(g) + O3 -> NO2(g) + O2(g) was studied in 2 experiments under pseudo-first order conditions. a) [O3] = 1x1014 molecules/cc in excess the [NO] varied as follows   {Note, time is in msec (1 msec = 1x10-3 s)!}             time (msec)                 NO (molecules/cc)                         0                      6x108                           100                  5x108                           500                  2.4x108                         700                  1.7x108                         1000                9.9x107 b) [NO] = 2x1014 molecules/cc in excess                  time (msec)                 O3 (molecules/cc)                         0                      1x1010                         50                    8.4x109                                   ...
A mixture of H2(g) and O2 (g) at 1.50 atm in a rigid container at temperature...
A mixture of H2(g) and O2 (g) at 1.50 atm in a rigid container at temperature T is ignited. The remaining gas, which is entirely H2 (g) exerts a pressure of 0.30 atm at tempertaure T. Assume that the gases are ideal and the H2O(l) formed in the combustion reaction takes up negligible volue in the container. Determine the mole fraction of O2(g) in the original mixture.
A mixture of H2(g) and O2 (g) at 1.50 atm in a rigid container at temperature...
A mixture of H2(g) and O2 (g) at 1.50 atm in a rigid container at temperature T is ignited. The remaining gas, which is entirely H2 (g) exerts a pressure of 0.30 atm at tempertaure T. Assume that the gases are ideal and the H2O(l) formed in the combustion reaction takes up negligible volue in the container. Determine the mole fraction of O2(g) in the original mixture.
Consider the equilibrium reaction. H2(g) + I2(g) ⇌ 2 HI(g) In this case, 1.000 M H2...
Consider the equilibrium reaction. H2(g) + I2(g) ⇌ 2 HI(g) In this case, 1.000 M H2 reacts with 2.000 M of I2 at a temperature of 441°C. The value of Kc = 67. Determine the equilibrium concentrations of H2, I2, and HI.
Consider the reaction: 2N2O(g) ---> 2N2(g) + O2(g) A. Express the rate of reaction in terms...
Consider the reaction: 2N2O(g) ---> 2N2(g) + O2(g) A. Express the rate of reaction in terms of the change in concentration of each of the reactants and products. B. In the first 15.0s of the reaction, 0.015mol of O2 is produced in a reaction vessel with a volume of 0.500L. What is the average rate of the reaction during this time interval? C. Predict the rate of change in the concentration of N2O during this time interval. In other words,...
heat of reaction at 400c for the following reaction: HCl(g) + O2= Cl2(g) + H2O (g)...
heat of reaction at 400c for the following reaction: HCl(g) + O2= Cl2(g) + H2O (g) HHV and LHV for liquid acetone (in KJ/Kg)
1.The total pressure of a mixture of O2(g) and H2(g) is 1.95 atm. The mixture is...
1.The total pressure of a mixture of O2(g) and H2(g) is 1.95 atm. The mixture is ignited and the resulting water is removed. The remaining mixture is pure H2(g) and exerts a pressure of 0.210atm when measured at the same temperature and volume as the original mixture. What were the mole fractions of O2(g) and H2(g) in the original mixture?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT