In: Statistics and Probability
Let μ1 and μ2 denote
true average densities for two different types of brick. Assuming
normality of the two density distributions, test:
H0: μ1 −
μ2 = 0 versus Ha:
μ1 − μ2 ≠ 0
Use the following data:
n1 = 6, x1 = 24.71,
s1 = 0.53, n2 = 5,
x2 = 21.85, and s2 =
0.530.
The conservative degrees of freedom, min(n1-1, n2-1), are:
| df = | 
Use α = 0.05. Round your test statistic to three
decimal places and your P-value to four decimal
places.)
Use the degrees of freedom above for your p-value.
Recall the command pt(t, df) will provide the area under the t
distribution. Manipulate this to find the appropriate area under
the curve that represents the p-value from your test.
| t = | |
| P-value = | 
State whether or not to reject the null.
Reject H0.Fail to reject H0.
State the conclusion in the problem context.
The data provides moderately suggestive evidence of a difference between the true average densities for the two different types of brick.The data provides no evidence of a difference between the true average densities for the two different types of brick. The data provides convincing evidence of a difference between the true average densities for the two different types of brick.The data provides suggestive, but inconclusive evidence of a difference between the true average densities for the two different types of brick.
The point estimate and margin of error for the 95% confidence
interval for μ1 − μ2 are:
(Use the minimum degrees of freedom for your critical value.)
±
You may need to use the t-table to complete this problem.
DF = min(n1-1 , n2-1 )=   4
----------------
Ho :   µ1 - µ2 =   0  
       
Ha :   µ1-µ2 ╪   0  
       
          
       
Level of Significance ,    α =   
0.05          
          
       
Sample #1   ---->   1  
       
mean of sample 1,    x̅1=   24.71  
       
standard deviation of sample 1,   s1 =   
0.53          
size of sample 1,    n1=   6  
       
          
       
Sample #2   ---->   2  
       
mean of sample 2,    x̅2=   21.850  
       
standard deviation of sample 2,   s2 =   
0.53          
size of sample 2,    n2=   5  
       
          
       
difference in sample means = x̅1-x̅2 =   
24.710   -   21.8500   =  
2.8600
          
       
std error , SE =    √(s1²/n1+s2²/n2) =   
0.3209          
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
2.8600   /   0.3209   ) =  
8.912
p-value =    0.0009
Decision:   p value < α , Reject Ho,
  
The data provides convincing evidence of a difference between the true average densities for the two different types of brick.
DF = min(n1-1 , n2-1 )=   4  
           
t-critical value , t* =    2.7764   (excel
formula =t.inv(α/2,df)      
   
          
       
          
       
          
       
std error , SE =    √(s1²/n1+s2²/n2) =   
0.321          
margin of error, E = t*SE =    2.7764  
*   0.321   =   0.8910
          
       
point estimate = difference of means = x̅1-x̅2 =
   24.7100   -   21.850  
=   2.860
confidence interval is       
           
Interval Lower Limit = point estimate  ± E =
2.860 ± 0.8910