In: Statistics and Probability
The worksheet "grocery" of "Assignment #4-2 (DATA)" gives the median store size (in square feet) by year for grocery stores. Note that this file is the same as the one given in Question 1.
Year | Size |
1993 | 33.0 |
1994 | 35.1 |
1995 | 37.2 |
1996 | 38.6 |
1997 | 39.3 |
1998 | 40.5 |
1999 | 44.8 |
2000 | 44.6 |
2001 | 44.0 |
2002 | 44.0 |
2003 | 44.0 |
2004 | 45.6 |
2005 | 48.1 |
2006 | 48.8 |
2007 | 47.5 |
2008 | 46.8 |
2009 | 46.2 |
2010 | 46.0 |
2013 | 46.5 |
Step 1: Run the simple linear regression and find the slope of the sample regression equation. Give your answer to 4 decimal places.
Answer- .6783
Step 2- According to the sample regression line, a point estimate for the median grocery store size in 2012 is: (Give your answer to 1 decimal place.)
Answer- 49.9
Step 3- The standard error of fit is approximately?? (Give your answer to 3 decimal places.)
X | Y | X * Y | X2 | Ŷ | ( Y - Ŷ )2 | |
1993 | 33.0000 | 65769 | 3972049 | 37 | 16.1071 | |
1994 | 35.1000 | 69989 | 3976036 | 38 | 6.7167 | |
1995 | 37.2000 | 74214 | 3980025 | 38 | 1.3688 | |
1996 | 38.6000 | 77046 | 3984016 | 39 | 0.2009 | |
1997 | 39.3000 | 78482 | 3988009 | 40 | 0.1820 | |
1998 | 40.5000 | 80919 | 3992004 | 40 | 0.0091 | |
1999 | 44.8000 | 89555 | 3996001 | 41.0832 | 13.8148 | |
2000 | 44.6000 | 89200 | 4000000 | 41.7615 | 8.0572 | |
2001 | 44 | 88044 | 4004001 | 42.4398 | 2.4343 | |
2002 | 44.0000 | 88088 | 4008004 | 43.11807 | 0.7778 | |
2003 | 44.0000 | 88132 | 4012009 | 43.79637 | 0.0415 | |
2004 | 45.6000 | 91382.4 | 4016016 | 44.47468 | 1.2664 | |
2005 | 48.1000 | 96440.5 | 4020025 | 45.15298 | 8.6849 | |
2006 | 48.8000 | 97892.8 | 4024036 | 45.83128 | 8.8133 | |
2007 | 47.5 | 95332.5 | 4028049 | 46.50958 | 0.9809 | |
2008 | 46.8 | 93974.4 | 4032064 | 47.18788 | 0.1505 | |
2009 | 46.2 | 92815.8 | 4036081 | 47.86618 | 2.7762 | |
2010 | 46 | 92460 | 4040100 | 48.54448 | 6.4744 | |
2013 | 46.5 | 93604.5 | 4052169 | 50.57939 | 16.6414 | |
Total | 38040 | 820.6 | 1643341.2 | 76160694 | 20419.69856 | 95.4982 |
Step 1
Equation of regression line is Ŷ = a + bX
b = ( n Σ(XY) - (ΣX* ΣY) ) / ( n Σ X2 - (ΣX)2
)
b = ( 19 * 1643341.2 - 38040 * 820.6 ) / ( 19 * 76160694 - ( 38040
)2)
b = 0.6783
a =( ΣY - ( b * ΣX ) ) / n
a =( 820.6 - ( 0.6783 * 38040 ) ) / 19
a = -1314.8413
Equation of regression line becomes Ŷ = -1314.8413 +
0.6783 X
Slope = b = 0.6783
Step 2
Ŷ = -1314.8413 + 0.6783 X
Ŷ = -1314.8413 + 0.6783 ( 2012 )
Ŷ = 49.9
Step 3
Standard Error of Estimate S = √ ( Σ (Y - Ŷ )2 / n - 2) = √(95.4982 / 17) = 2.370