In: Chemistry
Estimate the value of the equilibrium constant at 675 K for each of the following reactions. ΔG∘f for BrCl(g) is −1.0 kJ/mol. The standard molar entropy, S∘, for BrCl(g) is 240.0 J/mol⋅K.
3 significant figures in answer.
A. 2NO2(g)⇌N2O4(g) ΔH∘f for N2O4(g) is 9.16 kJ/mol.
B. Br2(g)+Cl2(g)⇌2BrCl(g) ΔH∘f for BrCl(g) is 14.6 kJ/mol.
Sol :-
(A). Given reaction is :
2NO2 (g) <------------> N2O4 (g)
As,
ΔH0rxn = ΔH0f of products - ΔH0f of reactants
= ΔH0f of N2O4 (g) - 2 x ΔH0f of NO2
= 11.1 KJ - 2 x 33.2 KJ
= 11.1 KJ - 66.4 KJ
= - 55.3 KJ
Also,
ΔS0rxn = S0Products - S0Reactants
= S0 of N2O4 - 2 x S0 of NO2
= 304.4 J/K - 2 x 240.1 J/K
= -175.8 J/K
From Gibb's-Helmholtz equation :
ΔG0rxn = ΔH0rxn - TΔS0rxn
= -55.3 KJ - (298 K).(-175.8 x 10-3 KJ/K)
= -55.3 KJ + 52.4 KJ
= - 2.90 KJ
Also,
ΔG0rxn = -2.303RT log K
log K = -ΔGrxn / 2.303RT
log K = - (-2.90 KJ) / (2.303 x 8.314 x 10-3 KJ.K-1mol-1 x 675 K)
log K = 0.224
K = antilog (0.224)
K = 1.67
Hence, equilibrium constant = K = 1.67
----------------
(B). Given reaction is : Br2 (g) + Cl2 (g) <--------------> 2 BrCl (g)
ΔH0rxn = 2 x ΔH0f of BrCl (g) - [ ΔH0f of Br2 (g) + ΔH0f of Cl2 (g)
= 2 x 14.6 KJ - [ 0 KJ + 0 KJ]
= 29.2 KJ
Similarly ,
ΔS0rxn = 2 x S0 of BrCl (g) - [ S0 of Br2 (g) + S0 of Cl2 (g) ]
= 2 x 240 J/K - [ 245.5 J/K + 223.1 J/K]
= 480 J/K - 468.6 J/K
= 11.4 J/K
Now, ΔG0rxn = 29.2 KJ - (298 K x 11.4 x 10-3 J/K)
= 29.2 KJ - 3.397 KJ
= 25.8 KJ
log K = - 25.8 KJ / (2.303 x 8.314 x 10-3 KJK-1mol-1 x 675 K)
K = antilog (- 1.996)
K = 1.00 x 10-2
Hence, equilibrium constant = 1.00 x 10-2