In: Statistics and Probability
The Excel file Burglaries contains data on the number of burglaries before and after a Citizen Police program. Apply the Descriptive Statistics tool to these data. Does Chebyshev’s theorem hold for the number of monthly burglaries before and after the citizen-police program?
Data :
Before Citizen-Police Program | |
Month | Monthly burglaries |
1 | 60 |
2 | 44 |
3 | 37 |
4 | 54 |
5 | 59 |
6 | 69 |
7 | 108 |
8 | 89 |
9 | 82 |
10 | 61 |
11 | 47 |
12 | 72 |
13 | 87 |
14 | 60 |
15 | 64 |
16 | 50 |
17 | 79 |
18 | 78 |
19 | 62 |
20 | 72 |
21 | 57 |
22 | 57 |
23 | 61 |
24 | 55 |
25 | 56 |
26 | 62 |
27 | 40 |
28 | 44 |
29 | 38 |
30 | 37 |
31 | 52 |
32 | 59 |
33 | 58 |
34 | 69 |
35 | 73 |
36 | 92 |
37 | 77 |
38 | 75 |
39 | 71 |
40 | 68 |
41 | 102 |
After Citizen-Police Program | |
Month | Monthly burglaries |
42 | 88 |
43 | 44 |
44 | 60 |
45 | 56 |
46 | 70 |
47 | 91 |
48 | 54 |
49 | 60 |
50 | 48 |
51 | 35 |
52 | 49 |
53 | 44 |
54 | 61 |
55 | 68 |
56 | 82 |
57 | 71 |
58 | 50 |
Monthly burglaries(Before Citizen-Police Program) | ||||
Mean | 64.31707 | |||
Standard Error | 2.624797 | |||
Median | 61 | |||
Mode | 60 | |||
Standard Deviation | 16.8069 | |||
Sample Variance | 282.472 | |||
Kurtosis | 0.251446 | |||
Skewness | 0.538088 | |||
Range | 71 | |||
Minimum | 37 | |||
Maximum | 108 | |||
Sum | 2637 | |||
Count | 41 |
______________________________________________________________
Monthly burglaries(After Citizen-Police Program) | |||
Mean | 60.64706 | ||
Standard Error | 3.864375 | ||
Median | 60 | ||
Mode | 44 | ||
Standard Deviation | 15.93322 | ||
Sample Variance | 253.8676 | ||
Kurtosis | -0.42961 | ||
Skewness | 0.511157 | ||
Range | 56 | ||
Minimum | 35 | ||
Maximum | 91 | ||
Sum | 1031 | ||
Count | 17 |
Both after and before are Right skewed graph so, we can apply Chebyshev's Theorem
______________________
Excel command = Data > Data analysis > Descriptive stats > select the data > ok