In: Statistics and Probability
1. The Excel file “FoodBank” contains the number of pounds of food donated to a local food bank for each of the past 30 weeks. For planning purposes, the manager of the food bank would like a forecasting model to predict future donations. Create simple exponential smoothing models in Excel using α=0.2, α=0.5, and α=0.8. (Recall that damping factor = 1-α.)
Week | Donations |
1 | 260 |
2 | 264 |
3 | 268 |
4 | 242 |
5 | 269 |
6 | 261 |
7 | 267 |
8 | 256 |
9 | 259 |
10 | 250 |
11 | 244 |
12 | 236 |
13 | 241 |
14 | 235 |
15 | 261 |
16 | 249 |
17 | 255 |
18 | 259 |
19 | 265 |
20 | 268 |
21 | 258 |
22 | 250 |
23 | 252 |
24 | 262 |
25 | 267 |
26 | 273 |
27 | 270 |
28 | 265 |
29 | 262 |
30 | 263 |
a. Which of the three models best fits the data set? How do you know that?
b. Using that model, predict the quantity of donations for week 31.
c. Import the data set into RapidMiner. Build a process to forecast the quantity of donations for future weeks using a Holt-Winters model to with the values of alpha, beta, and gamma all set to 0.5, and the period set to 1. Show a screenshot of the Process panel. You do not need to include the Parameters panel.
d. What quantity of donations does the Holt-Winters model predict for week 31?
Apply the below formula
Firstly we will calculate the simple smoothening model in excel
Using the excel
Go to Data>Data Analysis>Exponential smootheing>input range(Actual donations) fill value of damping factor>Ok
Or formula for forecasting
So table is given as below
Week |
Donations (Actual) |
Forecast (alpha(0.2) |
Error(0.2) | Forecast (alpha(0.5) | Error(0.5) | Forecast (alpha(0.8) | Error(0.8) |
1 | 260 | #N/A | #N/A | #N/A | #N/A | #N/A | #N/A |
2 | 264 | 260 | #N/A | 260 | #N/A | 260 | #N/A |
3 | 268 | 260.8 | #N/A | 262 | #N/A | 263.2 | #N/A |
4 | 242 | 262.24 | #N/A | 265 | #N/A | 267.04 | #N/A |
5 | 269 | 258.19 | 12.62 | 253.50 | 13.92 | 247.01 | 14.90 |
6 | 261 | 260.35 | 13.88 | 261.25 | 16.38 | 264.60 | 19.44 |
7 | 267 | 260.48 | 13.25 | 261.13 | 16.01 | 261.72 | 19.35 |
8 | 256 | 261.79 | 7.30 | 264.06 | 9.57 | 265.94 | 13.22 |
9 | 259 | 260.63 | 5.05 | 260.03 | 5.76 | 257.99 | 6.82 |
10 | 250 | 260.30 | 5.12 | 259.52 | 5.79 | 258.80 | 6.53 |
11 | 244 | 258.24 | 6.89 | 254.76 | 7.23 | 251.76 | 7.69 |
12 | 236 | 255.39 | 10.19 | 249.38 | 8.31 | 245.55 | 6.80 |
13 | 241 | 251.52 | 15.11 | 242.69 | 11.33 | 237.91 | 8.73 |
14 | 235 | 249.41 | 15.16 | 241.84 | 9.96 | 240.38 | 7.33 |
15 | 261 | 246.53 | 15.21 | 238.42 | 8.73 | 236.08 | 6.58 |
16 | 249 | 249.42 | 13.26 | 249.71 | 13.66 | 256.02 | 14.83 |
17 | 255 | 249.34 | 11.79 | 249.36 | 13.63 | 250.40 | 15.27 |
18 | 259 | 250.47 | 8.97 | 252.18 | 13.44 | 254.08 | 15.18 |
19 | 265 | 252.18 | 5.92 | 255.59 | 5.13 | 258.02 | 5.61 |
20 | 268 | 254.74 | 9.47 | 260.29 | 7.46 | 263.60 | 5.60 |
21 | 258 | 257.39 | 11.73 | 264.15 | 8.05 | 267.12 | 5.55 |
22 | 250 | 257.51 | 10.65 | 261.07 | 7.87 | 259.82 | 7.10 |
23 | 252 | 256.01 | 8.81 | 255.54 | 8.56 | 251.96 | 8.15 |
24 | 262 | 255.21 | 4.93 | 253.77 | 7.59 | 251.99 | 7.74 |
25 | 267 | 256.57 | 6.29 | 257.88 | 8.22 | 260.00 | 8.10 |
26 | 273 | 258.65 | 7.55 | 262.44 | 7.38 | 265.60 | 7.05 |
27 | 270 | 261.52 | 10.97 | 267.72 | 9.35 | 271.52 | 8.24 |
28 | 265 | 263.22 | 11.35 | 268.86 | 8.16 | 270.30 | 5.95 |
29 | 262 | 263.57 | 9.68 | 266.93 | 6.62 | 266.06 | 5.33 |
30 | 263 | 263.26 | 5.08 | 264.47 | 3.85 | 262.81 | 3.96 |
Let us find the values of Average rediuals(error)
Whose residuals(error) will be least model will be best
Model 1 when alpha =0.2
Residual=Average(Actual-Forecast)=9.86
Model 1 when alpha =0.5
Residual=Average(Actual-Forecast)=9.31
Model 1 when alpha =0.8
Residual=Average(Actual-Forecast)=9.27
The model with alpha =0.8 is best model because error is least
b)
We have to predict or Forecasted value for donations for week 31
c)