In: Statistics and Probability
If n = 15, ¯ x = 30, and s = 10, construct a confidence interval at a 95% confidence level. Assume the data came from a normally distributed population. Give your answers to three decimal places.
answer ___ < μμ < ____ answer
Solution :
Given that,
Point estimate = sample mean = = 30
sample standard deviation = s = 10
sample size = n = 15
Degrees of freedom = df = n - 1 = 15 - 1 = 14
At 95% confidence level
= 1 - 95%
=1 - 0.95 =0.05
/2
= 0.025
t/2,df
= t0.025,14 = 2.145
Margin of error = E = t/2,df * (s /n)
= 2.145 * ( 10/ 15)
Margin of error = E = 5.538
The 95% confidence interval estimate of the population mean is,
- E < < + E
30 - 5.538 < < 30 + 5.538
24.462 < < 35.538