Question

In: Statistics and Probability

Suppose we want to estimate the mean salary μ of all college graduates. We take a...

Suppose we want to estimate the mean salary μ of all college graduates. We take a sample of 25 graduates and the sample average is $39,000 with a sample standard deviation of $10,000. We construct a 95% confidence interval for the true average salary. What is the upper bound of the confidence interval i.e. what is the upper confidence limit?

$39,000 $43,128 $41,000 $42.422

Solutions

Expert Solution

Solution :

Given that,

= $39000

s =$10000

n = Degrees of freedom = df = n - 1 = 25- 1 = 24

a ) At 95% confidence level the t is ,

= 1 - 95% = 1 - 0.95 = 0.05

  =0.05

t ,df = t0.05,24 = 1.711 ( using student t table)

Margin of error = E = t,df * (s /n)

= 1.711* (10000 / 25)

= 3422

The 95% confidence interval estimate of the population mean is,

+ E

39000 + 3422

42422

upper bound=42422


Related Solutions

Suppose a 95% confidence interval for the mean salary of college graduates in a town in...
Suppose a 95% confidence interval for the mean salary of college graduates in a town in Mississippi is given by [$34,321, $41,279]. The population standard deviation used for the analysis is known to be $14,200. a. What is the point estimate of the mean salary for all college graduates in this town? b. Determine the sample size used for the analysis. (Round "z" value to 3 decimal places and final answer to the nearest whole number.)
   Suppose a 99% confidence interval for the mean salary of college graduates in a town...
   Suppose a 99% confidence interval for the mean salary of college graduates in a town in Mississippi is given by [$39,986, $48,414]. The population standard deviation used for the analysis is known to be $14,700. a. What is the point estimate of the mean salary for all college graduates in this town?   Point estimate    b. Determine the sample size used for the analysis.   Sample size   
Suppose a 90% confidence interval for the mean salary of college graduates in a town in...
Suppose a 90% confidence interval for the mean salary of college graduates in a town in Mississippi is given by [$45,783, $57,017]. The population standard deviation used for the analysis is known to be $13,700. [You may find it useful to reference the z table.] a. What is the point estimate of the mean salary for all college graduates in this town? b. Determine the sample size used for the analysis. (Round "z" value to 3 decimal places and final...
The annual salary of fresh college graduates is thought to be normally distributed with a mean...
The annual salary of fresh college graduates is thought to be normally distributed with a mean of $45,000 and standard deviation of $8000. Do the following. (a) What is the z −score of the salary of $55,000? (10 points) (b) If you randomly select such a graduate, what is the probability that he/she will be earning a salary of $55,000 or less? (Use z −score and Excel function to calculate this) (10 points) (c) If you randomly select such a...
The mean starting salary for college graduates in spring of 2018 was $43,200. Assume that the...
The mean starting salary for college graduates in spring of 2018 was $43,200. Assume that the distribution of starting salaries follows the normal distribution with a standard deviation of $3500. What percent of the graduates have starting salaries: A.) Less than $38,000? B.) More than $45,000? C.) Between $38,000 and $45,000?
Columbia College advertises that the mean starting salary of its graduates is $39,000. The committee for...
Columbia College advertises that the mean starting salary of its graduates is $39,000. The committee for Truth in Advertising, an independent organization, suspect that this claim is exaggerated and decides to conduct a hypothesis test to seek evidence to support its suspicious. A random sample of 100 graduates is used and the mean salary of the sample is $37,000, standard deviation of sample is $6,150. Use a 0.05 level of significance. Find also the p-value.
Columbia College advertises that the mean starting salary of its graduates is $39,000. The committee for...
Columbia College advertises that the mean starting salary of its graduates is $39,000. The committee for Truth in Advertising, an independent organization, suspect that this claim is exaggerated and decides to conduct a hypothesis test to seek evidence to support its suspicious. A random sample of 100 graduates is used and the mean salary of the sample is $37,000, standard deviation of sample is $6,150. Use a 0.05 level of significance. Find also the p-value.
The mean monthly salary of a random sample of 20 college graduates under the age of...
The mean monthly salary of a random sample of 20 college graduates under the age of 30 was found to be $1320 with a standard deviation of $677. Assume that the distribution of salaries for all college graduates under the age of 30 is normally distributed. Construct a 90% confidence interval for µ, the population mean of monthly salaries of all college graduates under the age of 30. Between $1071 and $1569 Between $1408 and $4831 Between $1058 and $1582...
A survey reported that the mean starting salary for college graduates after a three-year program was...
A survey reported that the mean starting salary for college graduates after a three-year program was $35,710.Assume that the distribution of starting salaries follows the normal distribution with a standard deviation of $3320. What percentage of the graduates have starting salaries: (Round z-score computation to 2 decimal places and the final answers to 4 decimal places.) a. Between $31,800 and $39,200? Probability b. More than $43,600? Probability c. Between $39,200 and $43,600? Probability
We wish to estimate μ , the mean mass (in kg) of the Sandhill Crane. We...
We wish to estimate μ , the mean mass (in kg) of the Sandhill Crane. We take a random sample of 20 Sandhill Cranes and measure their masses. For this sample, we find an average mass of 4.53 kg and a standard deviation of 0.8 kg. Assuming the masses are normally distributed. Find the upper limits of 98% confidence interval for μ . Select the closest to your answer. options: 4.70 5.20 4.90 4.80 5.10 5.00
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT