Question

In: Statistics and Probability

A consumer preference study compares the effects of three different bottle designs (A, B, and C)...

A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table.

Bottle Design Study Data
A B C
14 31 24
17 32 25
13 29 28
14 30 27
15 34 28

  

The Excel output of a one-way ANOVA of the Bottle Design Study Data is shown below.

SUMMARY
Groups Count Sum Average Variance
Design A 5 73 14.6 2.3
Design B 5 156 31.2 3.7
Design C 5 132 26.4 3.3
ANOVA
Source of Variation SS df MS F P-Value F crit
Between Groups 729.7333 2 364.8667 117.70 3.23E-06 3.88529
Within Groups 37.2 12.0 3.1000
Total 766.9333 14

(a) Test the null hypothesis that μA, μB, and μC are equal by setting α = .05. Based on this test, can we conclude that bottle designs A, B, and C have different effects on mean daily sales? (Round your answers to 2 decimal places.Leave no cells blank - be certain to enter "0" wherever required.)


(Do not reject OR Reject)  H0: bottle design (does OR Does not have) an impact on sales.

(b) Consider the pairwise differences μBμA, μCμA , and μCμB. Find a point estimate of and a Tukey simultaneous 95 percent confidence interval for each pairwise difference. Interpret the results in practical terms. Which bottle design maximizes mean daily sales? (Round your answers to 2 decimal places. Negative amounts should be indicated by a minus sign.)

Point estimate Confidence interval
μBμA: , [, ]
μCμA: , [, ]
μCμB: , [, ]

Bottle design (A, B, OR C) maximizes sales.

(c) Find a 95 percent confidence interval for each of the treatment means μA, μB, and μC. Interpret these intervals. (Round your answers to 2 decimal places. Negative amounts should be indicated by a minus sign.)

Confidence interval
μA: [, ]
μB: [, ]
μC: [, ]

Solutions

Expert Solution

a) From ANOVA Table,
Test Statistic F = 117.70 and F critical value = 3.88529
Since F value > F critical value so we reject H0
Thus we conclude that there is at least two means are different

b) Point estimate Confidence interval

μB –μA: 31.2 - 14.6 = 16.6
μC –μA: 26.4 - 14.6 = 11.8
μC –μB: 26.4 - 31.2 = -4.8


c) The 95 percent confidence interval for each of the treatment means μA, μB, and μC is


Related Solutions

A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 17...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 16...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 17...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 16...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 16...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are given below. Let μA, μB, and μC represent the mean daily sales using...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 18...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 19...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 13...
A consumer preference study compares the effects of three different bottle designs (A, B, and C)...
A consumer preference study compares the effects of three different bottle designs (A, B, and C) on sales of a popular fabric softener. A completely randomized design is employed. Specifically, 15 supermarkets of equal sales potential are selected, and 5 of these supermarkets are randomly assigned to each bottle design. The number of bottles sold in 24 hours at each supermarket is recorded. The data obtained are displayed in the following table. Bottle Design Study Data A B C 15...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT