In: Math
Day 1: 4
Day 2: 11
Day 4: 17
Day 7: 26
Day 10: 42
Day 12: 58
Day 15: 84
Day 18: 99
Day 20: 108
Day 23: 112
Day 25: 118
Day 28: 120
Day 30: 120
Day 1: 4
Day 2: 11
Day 4: 17
Day 7: 26
Day 10: 42
Day 12: 58
Day 15: 84
Day 18: 99
Day 20: 108
Day 23: 112
Day 25: 118
Day 28: 120
Day 30: 120
a) Interpolate the number of deaths after 15 days, and determine
the residual at this point, to the nearest hundredth
a)
X values (days) are: 1, 2, 4, 7, 10,.......,28,30
Y values (No. of deaths) are: 4, 11, 17, 26, 42,......, 120,120
Interpolation after 15 days:
Let X =Day 18
Using linear regression equation:
Predicted Y =4.50255X + 3.15404
Predicted Y =4.50255(18) + 3.15404 =84.19994
Thus, at X =18, predicted Y =84.20
Given: At X =18, observed Y =99
Residual =Observed Y - Predicted Y =99 - 84.20 =14.80
Using power regression equation:
Predicted Y =AXB
Predicted Y =4.386*(18)1.024 =84.61896
Thus, at X =18, predicted Y =84.62
Given: At X =18, observed Y =99
Residual =Observed Y - Predicted Y =99 - 84.62 =14.38