In: Statistics and Probability
Fifteen people are randomly assigned, so that 5 people exercise in the morning, afternoon, or night. After 8 weeks, their weight loss is measured in pounds. Compute the F ratio.
Morning | Afternoon | Night |
10 | 8 | 6 |
8 | 8 | 7 |
7 | 9 | 5 |
5 | 7 | 4 |
9 | 7 | 5 |
Applying one way ANOVA:
Morning | Afternoon | Night | |
10 | 8 | 6 | |
8 | 8 | 7 | |
7 | 9 | 5 | |
5 | 7 | 4 | |
9 | 7 | 5 | |
count ni= | 5 | 5 | 5 |
Average==ΣXi/ni= | 7.8000 | 7.8000 | 5.4000 |
Total=ΣX2i = | 319.000 | 307.0000 | 151.0000 |
SS=ΣX2i -(Σxi)2/ni= | 14.800 | 2.8000 | 5.2000 |
Grand average Xgrand =∑xi/N = | 105/10= | 7.0000 |
i | ni | x̅i | ni*(Xi-Xgrand)2 | SS=(ni-1)*s2 |
Morning | 5 | 7.8000 | 3.200 | 14.8 |
Afternoon | 5 | 7.8000 | 3.200 | 2.8 |
Night | 5 | 5.4000 | 12.800 | 5.2 |
Total | 15 | 19.200 | 22.8000 | |
SSTr | SSE | |||
df treatments = | number of treatments-1= | 2 | ||
df error = | N-k= | 15-3= | 12 | |
df total= | N-1= | 15-1= | 14 | |
MS(treatment) =SSTr/df(Tr)=19.2/2= | 9.60000 | |||
MS(error) =SSE/df(error)=22.8/12= | 1.90000 | |||
test statistic F ratio =MSTr/MSE =9.6/1.9= | 5.0526 |