In: Statistics and Probability
Customers | Morning | Afternoon | Evening | Night |
99 | 0 | 0 | 0 | 1 |
148 | 0 | 1 | 0 | 0 |
130 | 0 | 1 | 0 | 0 |
106 | 0 | 0 | 0 | 1 |
133 | 0 | 0 | 0 | 1 |
119 | 0 | 0 | 0 | 1 |
105 | 1 | 0 | 0 | 0 |
74 | 1 | 0 | 0 | 0 |
106 | 0 | 0 | 0 | 1 |
94 | 0 | 1 | 0 | 0 |
69 | 0 | 0 | 1 | 0 |
86 | 0 | 0 | 1 | 0 |
95 | 1 | 0 | 0 | 0 |
99 | 0 | 1 | 0 | 0 |
71 | 0 | 0 | 1 | 0 |
80 | 0 | 0 | 1 | 0 |
63 | 0 | 0 | 1 | 0 |
93 | 0 | 0 | 0 | 1 |
117 | 1 | 0 | 0 | 0 |
136 | 0 | 1 | 0 | 0 |
91 | 0 | 0 | 1 | 0 |
131 | 0 | 0 | 0 | 1 |
112 | 0 | 1 | 0 | 0 |
88 | 1 | 0 | 0 | 0 |
59 | 0 | 0 | 1 | 0 |
44 | 0 | 0 | 1 | 0 |
129 | 0 | 0 | 0 | 1 |
82 | 0 | 0 | 1 | 0 |
78 | 0 | 0 | 0 | 1 |
109 | 1 | 0 | 0 | 0 |
51 | 0 | 0 | 1 | 0 |
71 | 1 | 0 | 0 | 0 |
57 | 0 | 0 | 1 | 0 |
112 | 0 | 1 | 0 | 0 |
61 | 0 | 0 | 1 | 0 |
83 | 0 | 1 | 0 | 0 |
101 | 1 | 0 | 0 | 0 |
92 | 0 | 0 | 0 | 1 |
48 | 0 | 0 | 1 | 0 |
73 | 0 | 0 | 1 | 0 |
83 | 0 | 0 | 0 | 1 |
133 | 0 | 1 | 0 | 0 |
69 | 0 | 0 | 1 | 0 |
135 | 1 | 0 | 0 | 0 |
135 | 0 | 1 | 0 | 0 |
96 | 1 | 0 | 0 | 0 |
50 | 0 | 0 | 1 | 0 |
110 | 0 | 0 | 0 | 1 |
58 | 0 | 0 | 1 | 0 |
121 | 0 | 1 | 0 | 0 |
113 | 1 | 0 | 0 | 0 |
65 | 0 | 0 | 0 | 1 |
45 | 0 | 0 | 1 | 0 |
41 | 0 | 0 | 1 | 0 |
86 | 0 | 0 | 1 | 0 |
110 | 0 | 0 | 0 | 1 |
70 | 0 | 0 | 1 | 0 |
104 | 1 | 0 | 0 | 0 |
121 | 0 | 0 | 0 | 1 |
79 | 1 | 0 | 0 | 0 |
121 | 0 | 0 | 0 | 1 |
89 | 0 | 0 | 0 | 1 |
126 | 0 | 1 | 0 | 0 |
75 | 0 | 0 | 1 | 0 |
67 | 0 | 0 | 1 | 0 |
100 | 0 | 0 | 0 | 1 |
93 | 0 | 0 | 0 | 1 |
56 | 0 | 0 | 1 | 0 |
91 | 0 | 0 | 0 | 1 |
129 | 0 | 1 | 0 | 0 |
96 | 0 | 0 | 1 | 0 |
78 | 0 | 0 | 0 | 1 |
48 | 0 | 0 | 1 | 0 |
69 | 0 | 0 | 1 | 0 |
156 | 0 | 1 | 0 | 0 |
98 | 0 | 0 | 0 | 1 |
90 | 0 | 0 | 0 | 1 |
133 | 0 | 0 | 0 | 1 |
93 | 1 | 0 | 0 | 0 |
130 | 0 | 0 | 0 | 1 |
112 | 1 | 0 | 0 | 0 |
109 | 0 | 0 | 0 | 1 |
86 | 0 | 0 | 1 | 0 |
52 | 0 | 0 | 1 | 0 |
104 | 1 | 0 | 0 | 0 |
27 | 0 | 0 | 1 | 0 |
119 | 1 | 0 | 0 | 0 |
113 | 1 | 0 | 0 | 0 |
123 | 0 | 1 | 0 | 0 |
95 | 1 | 0 | 0 | 0 |
93 | 1 | 0 | 0 | 0 |
130 | 0 | 1 | 0 | 0 |
102 | 1 | 0 | 0 | 0 |
111 | 1 | 0 | 0 | 0 |
103 | 0 | 0 | 0 | 1 |
69 | 0 | 0 | 1 | 0 |
101 | 0 | 0 | 0 | 1 |
118 | 1 | 0 | 0 | 0 |
58 | 0 | 0 | 1 | 0 |
111 | 0 | 1 | 0 | 0 |
I have answered the question below
Please up vote for the same and thanks!!!
Do reach out in the comments for any queries
Answer:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.789459 | |||||||
R Square | 0.623245 | |||||||
Adjusted R Square | 0.601055 | |||||||
Standard Error | 17.03472 | |||||||
Observations | 100 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 4 | 46083.06 | 11520.77 | 52.93586 | 2.23E-23 | |||
Residual | 96 | 27857.45 | 290.1818 | |||||
Total | 100 | 73940.51 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 102.0435 | 3.551985 | 28.72858 | 6.17E-49 | 94.99284 | 109.0941 | 94.99284 | 109.0941 |
Morning | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 |
Afternoon | 20.19182 | 5.448496 | 3.705943 | #NUM! | 9.376636 | 31.007 | 9.376636 | 31.007 |
Evening | -37.7622 | 4.656692 | -8.10924 | 1.67E-12 | -47.0057 | -28.5188 | -47.0057 | -28.5188 |
Night | 1.920807 | 4.79377 | 0.400688 | 0.68954 | -7.59475 | 11.43637 | -7.59475 | 11.43637 |
Customers = 102.0435 + 20.19*Afternoon-37.7622*Evening+1.921*Night
b)
In morning shift,
Customers = 102.0435 + 20.19*0-37.7622*0+1.921*0 = 102.0435
c)
In afternoon
Customers = 102.0435 + 20.19*1-37.7622*0+1.921*0 = 122.23
d)
In evenings
Customers = 102.0435 + 20.19*0-37.7622*1+1.921*0 = 64.28
e)
Customers = 102.0435 + 20.19*0-37.7622*0+1.921*1 = 103.9645