In: Statistics and Probability
| Customers | Morning | Afternoon | Evening | Night |
| 99 | 0 | 0 | 0 | 1 |
| 148 | 0 | 1 | 0 | 0 |
| 130 | 0 | 1 | 0 | 0 |
| 106 | 0 | 0 | 0 | 1 |
| 133 | 0 | 0 | 0 | 1 |
| 119 | 0 | 0 | 0 | 1 |
| 105 | 1 | 0 | 0 | 0 |
| 74 | 1 | 0 | 0 | 0 |
| 106 | 0 | 0 | 0 | 1 |
| 94 | 0 | 1 | 0 | 0 |
| 69 | 0 | 0 | 1 | 0 |
| 86 | 0 | 0 | 1 | 0 |
| 95 | 1 | 0 | 0 | 0 |
| 99 | 0 | 1 | 0 | 0 |
| 71 | 0 | 0 | 1 | 0 |
| 80 | 0 | 0 | 1 | 0 |
| 63 | 0 | 0 | 1 | 0 |
| 93 | 0 | 0 | 0 | 1 |
| 117 | 1 | 0 | 0 | 0 |
| 136 | 0 | 1 | 0 | 0 |
| 91 | 0 | 0 | 1 | 0 |
| 131 | 0 | 0 | 0 | 1 |
| 112 | 0 | 1 | 0 | 0 |
| 88 | 1 | 0 | 0 | 0 |
| 59 | 0 | 0 | 1 | 0 |
| 44 | 0 | 0 | 1 | 0 |
| 129 | 0 | 0 | 0 | 1 |
| 82 | 0 | 0 | 1 | 0 |
| 78 | 0 | 0 | 0 | 1 |
| 109 | 1 | 0 | 0 | 0 |
| 51 | 0 | 0 | 1 | 0 |
| 71 | 1 | 0 | 0 | 0 |
| 57 | 0 | 0 | 1 | 0 |
| 112 | 0 | 1 | 0 | 0 |
| 61 | 0 | 0 | 1 | 0 |
| 83 | 0 | 1 | 0 | 0 |
| 101 | 1 | 0 | 0 | 0 |
| 92 | 0 | 0 | 0 | 1 |
| 48 | 0 | 0 | 1 | 0 |
| 73 | 0 | 0 | 1 | 0 |
| 83 | 0 | 0 | 0 | 1 |
| 133 | 0 | 1 | 0 | 0 |
| 69 | 0 | 0 | 1 | 0 |
| 135 | 1 | 0 | 0 | 0 |
| 135 | 0 | 1 | 0 | 0 |
| 96 | 1 | 0 | 0 | 0 |
| 50 | 0 | 0 | 1 | 0 |
| 110 | 0 | 0 | 0 | 1 |
| 58 | 0 | 0 | 1 | 0 |
| 121 | 0 | 1 | 0 | 0 |
| 113 | 1 | 0 | 0 | 0 |
| 65 | 0 | 0 | 0 | 1 |
| 45 | 0 | 0 | 1 | 0 |
| 41 | 0 | 0 | 1 | 0 |
| 86 | 0 | 0 | 1 | 0 |
| 110 | 0 | 0 | 0 | 1 |
| 70 | 0 | 0 | 1 | 0 |
| 104 | 1 | 0 | 0 | 0 |
| 121 | 0 | 0 | 0 | 1 |
| 79 | 1 | 0 | 0 | 0 |
| 121 | 0 | 0 | 0 | 1 |
| 89 | 0 | 0 | 0 | 1 |
| 126 | 0 | 1 | 0 | 0 |
| 75 | 0 | 0 | 1 | 0 |
| 67 | 0 | 0 | 1 | 0 |
| 100 | 0 | 0 | 0 | 1 |
| 93 | 0 | 0 | 0 | 1 |
| 56 | 0 | 0 | 1 | 0 |
| 91 | 0 | 0 | 0 | 1 |
| 129 | 0 | 1 | 0 | 0 |
| 96 | 0 | 0 | 1 | 0 |
| 78 | 0 | 0 | 0 | 1 |
| 48 | 0 | 0 | 1 | 0 |
| 69 | 0 | 0 | 1 | 0 |
| 156 | 0 | 1 | 0 | 0 |
| 98 | 0 | 0 | 0 | 1 |
| 90 | 0 | 0 | 0 | 1 |
| 133 | 0 | 0 | 0 | 1 |
| 93 | 1 | 0 | 0 | 0 |
| 130 | 0 | 0 | 0 | 1 |
| 112 | 1 | 0 | 0 | 0 |
| 109 | 0 | 0 | 0 | 1 |
| 86 | 0 | 0 | 1 | 0 |
| 52 | 0 | 0 | 1 | 0 |
| 104 | 1 | 0 | 0 | 0 |
| 27 | 0 | 0 | 1 | 0 |
| 119 | 1 | 0 | 0 | 0 |
| 113 | 1 | 0 | 0 | 0 |
| 123 | 0 | 1 | 0 | 0 |
| 95 | 1 | 0 | 0 | 0 |
| 93 | 1 | 0 | 0 | 0 |
| 130 | 0 | 1 | 0 | 0 |
| 102 | 1 | 0 | 0 | 0 |
| 111 | 1 | 0 | 0 | 0 |
| 103 | 0 | 0 | 0 | 1 |
| 69 | 0 | 0 | 1 | 0 |
| 101 | 0 | 0 | 0 | 1 |
| 118 | 1 | 0 | 0 | 0 |
| 58 | 0 | 0 | 1 | 0 |
| 111 | 0 | 1 | 0 | 0 |
I have answered the question below
Please up vote for the same and thanks!!!
Do reach out in the comments for any queries
Answer:
| SUMMARY OUTPUT | ||||||||
| Regression Statistics | ||||||||
| Multiple R | 0.789459 | |||||||
| R Square | 0.623245 | |||||||
| Adjusted R Square | 0.601055 | |||||||
| Standard Error | 17.03472 | |||||||
| Observations | 100 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 4 | 46083.06 | 11520.77 | 52.93586 | 2.23E-23 | |||
| Residual | 96 | 27857.45 | 290.1818 | |||||
| Total | 100 | 73940.51 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | 102.0435 | 3.551985 | 28.72858 | 6.17E-49 | 94.99284 | 109.0941 | 94.99284 | 109.0941 |
| Morning | 0 | 0 | 65535 | #NUM! | 0 | 0 | 0 | 0 |
| Afternoon | 20.19182 | 5.448496 | 3.705943 | #NUM! | 9.376636 | 31.007 | 9.376636 | 31.007 |
| Evening | -37.7622 | 4.656692 | -8.10924 | 1.67E-12 | -47.0057 | -28.5188 | -47.0057 | -28.5188 |
| Night | 1.920807 | 4.79377 | 0.400688 | 0.68954 | -7.59475 | 11.43637 | -7.59475 | 11.43637 |
Customers = 102.0435 + 20.19*Afternoon-37.7622*Evening+1.921*Night
b)
In morning shift,
Customers = 102.0435 + 20.19*0-37.7622*0+1.921*0 = 102.0435
c)
In afternoon
Customers = 102.0435 + 20.19*1-37.7622*0+1.921*0 = 122.23
d)
In evenings
Customers = 102.0435 + 20.19*0-37.7622*1+1.921*0 = 64.28
e)
Customers = 102.0435 + 20.19*0-37.7622*0+1.921*1 = 103.9645