In: Finance
A bond portfolio named VEX comprises four bonds (face value=$1000):
1) 100 semi-annual bond, 5-year maturity, a coupon rate of 4%
2) 200 annual bonds, 30-year maturity, 8% coupon bond.
3) 300 zero-coupon bonds, 10-year maturity.
4) 400 zero-coupon bonds, 20-year maturity.
2. Given the 6% initial yield, what is the VEX’s duration (use Macaulay’s duration)?
A | B | C | D | E | F |
2 | Particular | Bond 1 | Bond 2 | Bond 3 | Bond 4 |
3 | PAR Value | 1000 | 1000 | 1000 | 1000 |
4 | Settlement Date | 43941 | 43941 | 43941 | 43941 |
5 | Maturity Date | 45767 | 54898 | 47593 | 51246 |
6 | Price | =PRICE(C4,C5,C7,C8,C3,C9,C10) | =PRICE(D4,D5,D7,D8,D3,D9,D10) | =PRICE(E4,E5,E7,E8,E3,E9,E10) | =PRICE(F4,F5,F7,F8,F3,F9,F10) |
7 | Coupons | 0.04 | 0.08 | 0 | 0 |
8 | Yield | 0.06 | 0.06 | 0.06 | 0.06 |
9 | Frequency | 2 | 1 | 1 | 1 |
10 | Basis | 3 | 3 | 3 | 3 |
11 | Duration | =DURATION(C4,C5,C7,C8,C9,C10) | =DURATION(D4,D5,D7,D8,D9,D10) | =DURATION(E4,E5,E7,E8,E9,E10) | =DURATION(F4,F5,F7,F8,F9,F10) |
12 | Number of Unit | 100 | 200 | 300 | 400 |
13 | Invested Amount | =C12*C6 | =D12*D6 | =E12*E6 | =F12*F6 |
14 | Market Value of PF | =SUM(C13:F13) | |||
15 | VEX Duration | =SUMPRODUCT(C11:F11,C13:F13)/C14 |
Final Answer
A | B | C | D | E | F |
2 | Particular | Bond 1 | Bond 2 | Bond 3 | Bond 4 |
3 | PAR Value | 1000 | 1000 | 1000 | 1000 |
4 | Settlement Date | 20-04-2020 | 20-04-2020 | 20-04-2020 | 20-04-2020 |
5 | Maturity Date | 20-04-2025 | 20-04-2050 | 20-04-2030 | 20-04-2040 |
6 | Price | 761.15 | 284.23 | 558.39 | 311.80 |
7 | Coupons | 4% | 8% | 0 | 0 |
8 | Yield | 6% | 6% | 6% | 6% |
9 | Frequency | 2 | 1 | 1 | 1 |
10 | Basis | 3 | 3 | 3 | 3 |
11 | Duration | 4.56 | 13.89 | 10.00 | 20.00 |
12 | Number of Unit | 100 | 200 | 300 | 400 |
13 | Invested Amount | 76115.43 | 56845.76 | 167518.43 | 124721.89 |
14 | Market Value of Portfolio | 425201.51 | |||
15 | VEX Duration | 12.48 |
Feel free to ask any Query in Comment Section
Please provide feedback.
Cheers