In: Statistics and Probability
Listed below are altitudes (thousands of feet) and outside air temperatures (°F) recorded during a flight. Find the (a) explained variation, (b) unexplained variation, and (c) indicated prediction interval. There is sufficient evidence to support a claim of a linear correlation, so it is reasonable to use the regression equation when making predictions. For the prediction interval, use a 95% confidence level with the altitude of 6327 ft (or 6.327 thousand feet).
Altitude 4 12 15 20 28 31 33
Temperature 60 36 22 1 -34 -41 -51
A) Find explained variation. round to 3 decimal places
B) Find unexplained variation. round to 3 decimal places
C) Find indicated prediction interval. round to 3 decimal places
X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
4 | 60 | 269.90 | 3721.00 | -1002.14 |
12 | 36 | 71.04 | 1369.00 | -311.86 |
15 | 22 | 29.47 | 529.00 | -124.86 |
20 | 1 | 0.18 | 4.00 | -0.86 |
28 | -34 | 57.33 | 1089.00 | -249.86 |
31 | -41 | 111.76 | 1600.00 | -422.86 |
33 | -51 | 158.04 | 2500.00 | -628.57 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 143 | -7 | 697.7142857 | 10812.0 | -2741.00 |
mean | 20.43 | -1.00 | SSxx | SSyy | SSxy |
a)
explained variation = R² = (Sxy)²/(Sx.Sy) = 0.996
b)
unexplained variation = 1 - explained variation = 1 - 0.996 = 0.004
c)
X Value= 6.327
Confidence Level= 95%
Sample Size , n= 7
Degrees of Freedom,df=n-2 = 5
critical t Value=tα/2 = 2.571 [excel
function: =t.inv.2t(α/2,df) ]
X̅ = 20.43
Σ(x-x̅)² =Sxx 697.7
Standard Error of the Estimate,Se= 2.962
Predicted Y at X= 6.327 is
Ŷ = 79.255 +
-3.929 * 6.327 =
54.399
For Individual Response Y
standard error, S(ŷ)=Se*√(1+1/n+(X-X̅)²/Sxx) =
3.5393
margin of error,E=t*std error=t*S(ŷ)=
2.5706 * 3.54 =
9.0982
Prediction Interval Lower Limit=Ŷ -E =
54.399 - 9.098
= 45.301
Prediction Interval Upper Limit=Ŷ +E =
54.399 + 9.098
= 63.497