In: Statistics and Probability
Listed below are altitudes (thousands of feet) and outside air temperatures (°F) recorded during a flight. Find the (a) explained variation, (b) unexplained variation, and (c) indicated prediction interval. There is sufficient evidence to support a claim of a linear correlation, so it is reasonable to use the regression equation when making predictions. For the prediction interval, use a 95% confidence level with the altitude of 6327 ft (or 6.327 thousand feet).
Altitude Temperature
| 2 | 55 | 
| 9 | 33 | 
| 16 | 23 | 
| 21 | 0 | 
| 27 | -26 | 
| 31 | -41 | 
| 34 | -50 | 
a. Find the explained variation.
b. Find the unexplained variation.
c. Find the indicated prediction interval.
The statistical software output for this problem is :
Simple linear regression results:
Dependent Variable: Temp
Independent Variable: Altitude
Temp = 66.244306 - 3.3550725 Altitude
Sample size: 7
R (correlation coefficient) = -0.99077002
R-sq = 0.98162523
Estimate of error standard deviation: 5.9070439
Parameter estimates:
| Parameter | Estimate | Std. Err. | Alternative | DF | T-Stat | P-value | 
|---|---|---|---|---|---|---|
| Intercept | 66.244306 | 4.673472 | ≠ 0 | 5 | 14.174538 | <0.0001 | 
| Slope | -3.3550725 | 0.20528397 | ≠ 0 | 5 | -16.343568 | <0.0001 | 
Analysis of variance table for regression model:
| Source | DF | SS | MS | F-stat | P-value | 
|---|---|---|---|---|---|
| Model | 1 | 9320.3913 | 9320.3913 | 267.11221 | <0.0001 | 
| Error | 5 | 174.46584 | 34.893168 | ||
| Total | 6 | 9494.8571 | 
Predicted values:
| X value | Pred. Y | s.e.(Pred. y) | 95% C.I. for mean | 95% P.I. for new | 
|---|---|---|---|---|
| 6.327 | 45.016763 | 3.5865209 | (35.797318, 54.236208) | (27.252518, 62.781007) | 
(a) explained variation = R-sq = 0.9816 = 98.16 %
(b) unexplained variation = 1-0.9816 = 0.0184 = 1.84%
(c) (27.252518, 62.781007)