In: Statistics and Probability
You want to see if there is a relationship between how anxious someone is and their favourite colour. You assume that people who like colours like red or orange are more likely to be anxious than those who like colours like blue or green. From your population, 50 percent report liking red or orange and 50% report liking blue or green. You then give them an anxiety test. Anxiety scores range from 0-25 (0 being the lowest, 25 being the highest level of anxiety). The results are in the table below. What is your conclusion?
| 
 Warm  | 
 Cool  | 
 D  | 
 D2  | 
|
| 
 20  | 
 23  | 
 -3  | 
 9  | 
|
| 
 24  | 
 21  | 
 3  | 
 9  | 
|
| 
 14  | 
 20  | 
 -6  | 
 36  | 
|
| 
 15  | 
 17  | 
 -2  | 
 4  | 
|
| 
 18  | 
 23  | 
 -5  | 
 25  | 
|
| 
 17  | 
 25  | 
 -8  | 
 64  | 
|
| 
 20  | 
 23  | 
 -3  | 
 9  | 
|
| 
 13  | 
 25  | 
 -12  | 
 144  | 
|
| 
 21  | 
 21  | 
 0  | 
 0  | 
|
| 
 ΣX  | 
 162  | 
 198  | 
 -36  | 
 300  | 
| 
 ΣX²  | 
 3020  | 
 4408  | 
 300  | 
 27012  | 
| 
 SS  | 
 104  | 
 52  | 
 156  | 
 17012  | 
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 <   0  
           
   
          
           
   
Level of Significance ,    α =   
0.05          
       
          
           
   
Sample #1   ---->   1  
           
   
mean of sample 1,    x̅1=   18.000  
           
   
standard deviation of sample 1,   s1 =   
3.606          
       
size of sample 1,    n1=   9  
           
   
          
           
   
Sample #2   ---->   2  
           
   
mean of sample 2,    x̅2=   22.000  
           
   
standard deviation of sample 2,   s2 =   
2.550          
       
size of sample 2,    n2=   9  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
18.0000   -   22.0   =  
-4.00  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    3.1225  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
1.4720          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (   -4.0000  
-   0   ) /    1.47  
=   -2.7175
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
16          
       
t-critical value , t* =       
-1.746   (excel function: =t.inv(α,df)  
           
Decision:   | t-stat | > | critical value |, so,
Reject Ho
           
       
p-value =        0.007609   [
excel function: =T.DIST(t stat,df) ]   
           
Conclusion:     p-value <α , Reject null
hypothesis