Question

In: Statistics and Probability

Suppose the time to failure follows an exponential distribution with parameter λ. Based on type II...

Suppose the time to failure follows an exponential distribution with parameter λ. Based on type II censoring determine the likelihood and the maximum likelihood estimator for λ. Assume that n = 3 and the experiment ends after 2 failures.

Solutions

Expert Solution


Related Solutions

For a random sample of sizenfrom an Exponential distribution with rate parameter λ (so that the...
For a random sample of sizenfrom an Exponential distribution with rate parameter λ (so that the density is fY(y) =λe−λy), derive the maximum likelihood estimator, the methods of moments estimator, and the Bayes estimator (that is, the posterior mean) using a prior proportional to λe−λ, for λ >0. (Hint: the posterior distribution will be a Gamma.)
A certain type of pump’s time until failure has an exponential distribution with a mean of...
A certain type of pump’s time until failure has an exponential distribution with a mean of 5000 hours. State answers rounded to two decimal places. What is the probability it will still be operating after 3000 hours of service? What is the probability that it will fail prior to 6000 hours of service? If it has been running for 3000 hours, what is the probability it will still be running 2000 hours later?
The time until failure for an electronic switch has an exponential distribution with an average time...
The time until failure for an electronic switch has an exponential distribution with an average time to failure of 4 years, so that λ = 1 4 = 0.25. (Round your answers to four decimal places.) (a) What is the probability that this type of switch fails before year 3? (b) What is the probability that this type of switch will fail after 5 years? (c) If two such switches are used in an appliance, what is the probability that...
The lifetime of a certain type of batteries follows an exponential distribution with the mean of...
The lifetime of a certain type of batteries follows an exponential distribution with the mean of 12 hours. a) What is the probability that a battery will last more than 14 hours? (Answer: 0.3114) b) Once a battery is depleted, it is replaced with a new battery of the same type. Assumingindependence between lifetimes of batteries, what is the probability that exactly 2 batteries will be depleted within 20 hours? (Answer: 0.2623) c) What is the probability that it takes...
-Event time T follows an exponential distribution with a mean of 40 -Censoring time Tc follows...
-Event time T follows an exponential distribution with a mean of 40 -Censoring time Tc follows an exponential distribution with a mean of 25 -Generate 500 observations, with censoring flag indicating whether censoring happened before events Question: What do you think the percent of censoring should be? Show your calculation or reasoning.
The failure time T (in hours of use) for a particular electronics component follows an exponential...
The failure time T (in hours of use) for a particular electronics component follows an exponential distribution with parameter λ. Find the probability that a failure time is somewhere within 1 standard deviation of the mean failure time. Explain in words what you did to solve this, and then tell me your final answer.
The lifespan of an electrical component has an exponential distribution with parameter lambda = 0.013. Suppose...
The lifespan of an electrical component has an exponential distribution with parameter lambda = 0.013. Suppose we have an iid sample of size 100 of these components Some hints: P(X < c) for an exponential(lambda) can be found via pexp(c,lambda) E[X] = 1/lambda and Var[X] = 1/lambda^2 Round all answers to 4 decimals Using the exact probability distribution, what is the probability that a single component will be within 15.38 units of the population mean? Using Chebyshev's inequality, what is...
5) The lifetime of a certain type of batteries follows an exponential distribution with the mean...
5) The lifetime of a certain type of batteries follows an exponential distribution with the mean of 12 hours. a) What is the probability that a battery will last more than 14 hours? b) Once a battery is depleted, it is replaced with a new battery of the same type. Assuming independence between lifetimes of batteries, what is the probability that exactly 2 batteries will be depleted within 20 hours? c) What is the probability that it takes less than...
The exponential distribution with rateλhas meanμ= 1/λ. Thus the method of moments estimator of λ is...
The exponential distribution with rateλhas meanμ= 1/λ. Thus the method of moments estimator of λ is 1/X. Use the following steps to verify that X is unbiased, but 1/X is biased. USING R: a) Generate 10000 samples of size n= 5 from the standard exponential distribution (i.e.λ= 1) using rexp(50000) and arranging the 50000 random numbers in a matrix with 5 rows. b) Use the apply() function to compute the 10000 sample means and store them in the object means....
The exponential distribution with rate λ has mean μ = 1/λ. Thus the method of moments...
The exponential distribution with rate λ has mean μ = 1/λ. Thus the method of moments estimator of λ is 1/X. Use the following steps to verify that X is unbiased, but 1/X is biased. a) Generate 10000 samples of size n = 5 from the standard exponential distribution (i.e. λ = 1) using rexp(50000) and arranging the 50000 random numbers in a matrix with 5 rows. b) Use the apply() function to compute the 10000 sample means and store...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT