In: Math
Let X be the lifetime of the
batteries      
X follows Exponential distribution with mean = 12
hours      
Hence, λ = 1/12 batteries fail per
hour      
       
a) To find P(a battery will last more than 14
hours)      
that is to find P(X >
14)      
We use Excel function EXPON.DIST to find the
probability      
P(X > 14) = 1 - P(X <
14)      
   = 1 - EXPON.DIST(14, 1/12,
TRUE)     
   = 1 - 0.6886     
   = 0.3114     
P(a battery will last more than 14 hours) = 0.3114
     
       
b) To find P(exactly 2 batteries will be depleted within 20
hours)      
Let Y be the number of batteries depleting in 20
hours      
We have 1/12 batteries depleted per
hour      
Thus mean number of batteries depleting in 20 hours =
20/12      
Y ~ Poisson distribution with λ = 20/12 batteries depleting in 20
hours      
P(exactly 2 batteries will be depleted within 20
hours)      
that is to find P(Y = 2)      
We use Excel function POISSON.DIST to find the
probability      
P(Y = 2) = POISSON.DIST(2, 20/12,
FALSE)      
               
= 0.2623      
P(exactly 2 batteries will be depleted within 20 hours) =
0.2623      
       
c) We have 1/12 batteries depleted per
hour      
Thus 4 batteries will be depleted in 4*12 = 48
hours      
Let Y be the time for depletion of 4
batteries      
Y follows Exponential distribution with λ =
1/48      
To find P(Y < 30)      
We use Excel function EXPON.DIST to find the
probability      
P(Y < 30) = EXPON.DIST(30, 1/48,
TRUE)      
   = 0.4647     
P(it takes less than 30 hours until the fourth battery is needed) =
0.4647