In: Statistics and Probability
2. . Determine the value for x assuming that X is normally distributed with a mean of 15 and a standard deviation of 2.
(a) P(X < 11)
(b) P(X > 0)
(c) P(3 < X < 7)
(d) P(-2 < X < 9)
(e) P(2 < X < 8)
Solution :
Given that ,
mean = = 15
standard deviation = = 2
(a)
P(X<11 ) = P[(X- ) / < (11 -15) /2 ]
= P(z <-2 )
Using z table
= 0.0228
probability=0.0228
(B)P(x >0 ) = 1 - P(x<0 )
= 1 - P[(x -) / < (0 -15) /2 ]
= 1 - P(z <-7.5 )
Using z table
= 1 - 0
= 1
probability= 1
(c)
P(3< x <7 ) = P[(3 - 15) /2 < (x - ) / < (7 -15) /2 )]
= P( -6< Z <-4 )
= P(Z < -4) - P(Z <-6 )
Using z table
= 0-0
probability= 0
(d)
P(-2< x <9) = P[(-2 - 15) /2 < (x - ) / < (9 -15) /2 )]
= P( -8.5< Z <-3 )
= P(Z < -3) - P(Z <-8.5)
Using z table
= 0.0013-0
probability= 0.0013
(e)
P(2< x <8) = P[(2 - 15) /2 < (x - ) / < (8 -15) /2 )]
= P( -6.5< Z <-3.5 )
= P(Z < -3.5) - P(Z <-6.5)
Using z table
=0.0002-0
probability= 0.0002