Question

In: Statistics and Probability

Assuming that the population is normally​ distributed, construct a 90​% confidence interval for the population mean...

Assuming that the population is normally​ distributed, construct a 90​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range.

Sample​ A:

1   

1   

4   

4   

5   

5   

8   

8

  

Sample​ B:

1   

2   

3   

4   

5   

6  

7  

8

a. Construct a 90​% confidence interval for the population mean for sample A

b. Construct a 90​% confidence interval for the population mean for sample B

Explain why these two samples produce different confidence intervals even though they have the same mean and range.

A.The samples produce different confidence intervals because their sample sizes are different.

B.The samples produce different confidence intervals because their critical values are different.

C.The samples produce different confidence intervals because their standard deviations are different.

D.The samples produce different confidence intervals because their medians are different.

Solutions

Expert Solution

For calculating 90​% confidence interval for the population mean for sample A and B, first we need to identify mean and standard deviation. We used MS Excel for calculating mean and average.

Answer a)

90​% confidence interval for the population mean for sample A

Answer b)

90​% confidence interval for the population mean for sample A

90% CI Sample A = (2.71, 6.29) and 90% CI Sample B = (2.859, 6.141)

Thus, we can see that there is difference in 90% CI for Sample A and Sample B

These two samples produce different confidence intervals even though they have the same mean and range because their standard deviations are different. (Option C is correct)

Explanation

Confidence Interval Formula is as follows:

From the formula of confidence interval, we can see that CI depends on 4 variables namely mean, critical t value, sample size, and standard deviation.

Now, in our case mean and sample size are same. Also, critical t value is same as we are finding 90% CI. So the only factor differentiating sample A from sample B is standard deviation.  


Related Solutions

Assuming that the population is normally​ distributed, construct a 90% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 90% confidence interval for the population​ mean, based on the following sample size of n=7. ​1, 2,​ 3, 4, 5 6, and 24 Change the number 24 to 7 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence interval.
Assuming that the population is normally​ distributed, construct a 90 % confidence interval for the population​...
Assuming that the population is normally​ distributed, construct a 90 % confidence interval for the population​ mean, based on the following sample size of n equals 5. ​1, 2,​ 3, 4​, and 29 In the given​ data, replace the value 29 with 5 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general.
Assuming that the population is normally​ distributed, construct a 99% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 99% confidence interval for the population​ mean, based on the following sample size of n=7.​ 1, 2,​ 3,4, 5, 6​,and 30   Change the number 30 to 7 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence interval. Find a 99 % confidence interval for the population mean. ​(Round to two decimal places as​ needed.) Change the number 30...
Assuming that the population is normally​ distributed, construct a 9090​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 9090​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample​ A: 11    22    33    33    66    66    77    88 Full data set Sample​ B: 11    22    33    44    55    66    77    88 Construct a 9090​% confidence interval for the population mean for sample A. nothing less than or equals≤muμless...
assuming that the population is normally distributed, construct a 99% confidence interval for the population mean,...
assuming that the population is normally distributed, construct a 99% confidence interval for the population mean, based on the following sample size n=6. 1,2,3,4,5 and 29. in the given data, replace the value 29 with 6 and racalculate the confidence interval. using these results, describe the effect of an outlier on the condidence interval, in general find a 99% confidence interval for the population mean, using the formula.
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 95​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample A   1 1 2 4 5 7 8 8 Sample B   1 2 3 4 5 6 7 8
Assuming that the population is normally​ distributed, construct a 99​% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 99​% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. Sample​ A: 1   4   4   4   5   5   5   8 Sample B: 1   2   3   4   5   6   7   8 Construct a 99​% confidence interval for the population mean for sample A. less than or equalsmuless than or equals Type...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean, based on the following sample size of n equals 7. ​1, 2,​ 3, 4, 5, 6, 7, and 23 In the given​ data, replace the value 23 with 7 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 95% confidence interval for the population​ mean, using...
Assuming that the population is normally​ distributed, construct a 99% confidence interval for the population mean...
Assuming that the population is normally​ distributed, construct a 99% confidence interval for the population mean for each of the samples below. Explain why these two samples produce different confidence intervals even though they have the same mean and range. SAMPLE A: 1 1 4 4 5 5 8 8 SAMPLE B: 1 2 3 4 5 6 7 8 1.Construct a 99% confidence interval for the population mean for sample A. ( type integers or decimals rounded to two...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean,...
Assuming that the population is normally​ distributed, construct a 95% confidence interval for the population​ mean, based on the following sample size of n=6. ​1, 2,​ 3, 4, 5​,and 15 In the given​ data, replace the value 15 with 6 and recalculate the confidence interval. Using these​ results, describe the effect of an outlier​ (that is, an extreme​ value) on the confidence​ interval, in general. Find a 95% confidence interval for the population​ mean, using the formula or technology.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT