Question

In: Mechanical Engineering

A 2-in diameter jet of water having a velocity of 30 ft/s is deflected parallel to...

A 2-in diameter jet of water having a velocity of 30 ft/s is deflected parallel to a curved vane. The jet flows freely in the atmosphere in a horizontal plane. Calculate the x and y forces exerted on the water by the vane. Defelction is 90 Degrees

Solutions

Expert Solution


Related Solutions

A jet of water 50 mm in diameter with a velocity of 20 m/s strikes a...
A jet of water 50 mm in diameter with a velocity of 20 m/s strikes a flat plate inclined at an angle of 30° to the axis of the jet. Determine (i) the normal force exerted on the plate when the plate is stationary (ii) the normal force exerted on the plate when the plate is moving at 5 m/s in the direction of the jet (iii) the work-done on the plate and the efficiency for case (ii).
Water flows through a 3 inch diameter pipe at a velocity of 10 ft/s. Find the...
Water flows through a 3 inch diameter pipe at a velocity of 10 ft/s. Find the a) volume flow rate in cfs(cubic feet per second) and gpm(gallons per minute) b) mass flow rate in slug/second.
Glycerin flows parallel to a flat plate measuring 2 ft by 2 ft with a velocity...
Glycerin flows parallel to a flat plate measuring 2 ft by 2 ft with a velocity of 10 fps. Determine values for the mean convective heat-transfer coefficient and the associated drag force imposed on the plate for glycerin temperatures of 30, 50, and 80F. What heat flux will result, in each case, if the plate temperature is 50F above that of the glycerin?
Prob. 2) A jet powered aircraft flies at a speed of 900 ft / s at...
Prob. 2) A jet powered aircraft flies at a speed of 900 ft / s at an altitude of 20,000 ft, where the ambient conditions are 7 psia and 10 ° F. The pressure ratio in the compressor is 13 and the temperature at the inlet of the turbine is 2400 R. Assuming an ideal operation for all specific components and heats constants for air at room temperature draw and graph the physical and T-S diagrams and determine: a) the...
Water at a temperature of 80 °C and velocity of 1.2 m/s is flowing parallel to...
Water at a temperature of 80 °C and velocity of 1.2 m/s is flowing parallel to one side of a smooth flat plate. The plate is maintained at a constant temperature of 24 °C and is 0.8 m long and 0.5 m wide. Determine the following: The heat flux at a distance x = 0.6m from the front edge of the plate, q” = ____________ The location of the maximum heat flux on the plate, x = _________ The total...
Water flows at a rate of 30 ft3/s from a reservoir with elevation 45 ft to...
Water flows at a rate of 30 ft3/s from a reservoir with elevation 45 ft to a lower one with elevation 0 ft through a pipe Of length 1800 ft with bends, elbows, entrances and exits contributing a total of minor losses Of ?K = 2.5. The pipe has a roughness e = 0.0005ft. -Determine the pipe diameter needed. -How important are minor losses? -Plot the EGL.
A water tower supplies water to a city through a pipe with 1 ft diameter. The...
A water tower supplies water to a city through a pipe with 1 ft diameter. The pipe is 0.5 miles long and is made of commercial steel pipe. Over the years, the supply line lost head and engineers are considering the replacement of 94 percent of the pipe length with a larger diameter pipe (same type). The peak water demand is 3.53 ft3/sec. How much pressure head could be gained by this strategy?
´The velocity of oil flowing thru a 30 mm diameter pipe is equal to 2m/s. Oil...
´The velocity of oil flowing thru a 30 mm diameter pipe is equal to 2m/s. Oil has a kinematic viscosity of 5 x 10 -5 sq.m/s. If the pipe has a length of 120 m, compute the Reynolds Number, friction factor, and head loss in the pipe.
An adiabatic steam turbine is fed by 2.20 lbm/s, at a velocity of 100 ft/s
An adiabatic steam turbine is fed by 2.20 lbm/s, at a velocity of 100 ft/s. The turbine generates an output of 1507 hp. The specific enthalpy of the water at the turbine outlet is 1007 Btu/lbm. The exit velocity is 600 ft/s. Determine the specific enthalpy of the steam at the turbine inlet.
Water in pipe AB (Figure 2), diameter (DAB) 1.2 m, is flowing with the velocity (VAB)...
Water in pipe AB (Figure 2), diameter (DAB) 1.2 m, is flowing with the velocity (VAB) of 3 m/second. Then it continues to flow through pipe BC, with a diameter (DBC) of 1.5 m and finally flows through branch pipe of CD, diameter (DCD) of 0.8 m and pipe of CE (DCE), with a velocity (VCE) of 2.1 m/second. Calculate: 1. Discharge of pipe AB (QAB) 2. Flow velocity of pipe BC (VBC) 3. Flow velocity of pipe BC (VBC)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT