Question

In: Physics

If an object is on a ramp inclined by \theta θ and the object remains at...

If an object is on a ramp inclined by \theta θ and the object remains at rest, which of the following is true? Select all correct answers.

A

The frictional force is zero.

B

The frictional force is equal to mg sin \theta mgsinθ and is directed down the slope.

C

The frictional force is equal to mg sin \theta mgsinθ and is directed up the slope.

D

The frictional force is equal to \mu_s mg cos \theta μs​mgcosθ and is directed up the slope.

E

The frictional force is equal to \mu_k mg cos \theta μk​mgcosθ and is directed up the slope.

Solutions

Expert Solution

Hey there!

The horizontal and vertical component of the block is marked in the diagram. is the angle of inclination and N is the normal force acting. In that case the frictional case is said to be acting in a direction opposite to that of the direction the block slants to hold the block in place. Here we could see that the block tends to slope down and hence the frictional force acts upwards and keeps the block at rest.

The frictional force acting can be given as

where is the coefficient of static friction


Related Solutions

A 5.75-kg block is sent up a ramp inclined at an angle θ = 32.5° from...
A 5.75-kg block is sent up a ramp inclined at an angle θ = 32.5° from the horizontal. It is given an initial velocity v0 = 15.0 m/s up the ramp. Between the block and the ramp, the coefficient of kinetic friction is μk = 0.382 and the coefficient of static friction is μs = 0.687. How far up the ramp (in the direction along the ramp) does the block go before it comes to a stop? ___________m
A 20.0 kg package is positioned at the bottom of an inclined ramp. The ramp has...
A 20.0 kg package is positioned at the bottom of an inclined ramp. The ramp has a length of 15.0 m, and an inclination angle of 34.0°above the horizontal floor. A constant force having a magnitude 290 N, and directed parallel to the horizontal floor, is applied to the package in order to push it up the ramp. While the package is moving, the ramp exerts a constant frictional force of 65.0 N on it. a. Draw a free-body diagram...
2. A 13.2kg block is on a ramp, with an incline of θ (a) If the...
2. A 13.2kg block is on a ramp, with an incline of θ (a) If the ramp is frictionless what is the magnitude of the acceleration of the block down the ramp? (b) If the ramp has a coefficient of static friction of µs = 0.3, at what angle θ will the block start to move? Imagine like the friction lab, you slowly increase the incline of the ramp. (c) Does the angle found in b) depend on mass? (d)...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.500 and the constant of the spring is k = 6000 N/m. What is the net impulse exerted on...
When a crate with mass 23.0 kgkg is placed on a ramp that is inclined at...
When a crate with mass 23.0 kgkg is placed on a ramp that is inclined at an angle αα below the horizontal, it slides down the ramp with an acceleration of 4.9 m/s2m/s2. The ramp is not frictionless. To increase the acceleration of the crate, a downward vertical force F⃗ F→ is applied to the top of the crate. a. What must FF be in order to increase the acceleration of the crate so that it is 9.8 m/s2m/s2? b....
A hollow sphere is released from the top of an inclined plane of inclination theta. (a)...
A hollow sphere is released from the top of an inclined plane of inclination theta. (a) What should be the minimum coefficient of friction between the plane and the sphere to prevent it from sliding? (b) Find the kinetic energy of the sphere as it moves down a length l on the incline if the friction coefficient is half the value calculated in part (a). Please show all steps
A 200 g hockey puck is launched up a metal ramp that is inclined at a...
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction between the puck and the ramp are μs = 0.40 and μk = 0.30, and the puck's initial velocity at the base is 3.8 m/s parallel to the sloping surface of the ramp. What speed does the puck have when it slides back down to its starting point? I know that the answer is 2.1...
A 5.35-kg box is pulled up a ramp that is inclined at an angle of 33.0°...
A 5.35-kg box is pulled up a ramp that is inclined at an angle of 33.0° with respect to the horizontal, as shown below. The coefficient of kinetic friction between the box and the ramp is 0.165, and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of 2.09 m/s2, what must the tension FT in the rope be? Use g = 9.81 m/s2 for the acceleration due to...
A 200 g hockey puck is launched up a metal ramp that is inclined at a...
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction between the hockey puck and the metal ramp are #5 = 0.40 and pk = 0.30, respectively. The puck's initial speed is 14.9 m/s. What speed does it have when it slides back down to its starting point?
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an...
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an angle θ=15.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is μk=0.295 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of a=3.09 m/s2, calculate the tension FT in the rope. Use g=9.81 m/s2 for the acceleration due to gravity.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT