Question

In: Physics

2 identical speakers are in phase with eachother, at the same position on the x-axis, and...


2 identical speakers are in phase with eachother, at the same position on the x-axis, and both have a wavelength of 3 meters. They are seperated from eachother on the y-axis by a distance of 6 meters. While an observer maintains a constant position on the y-axis, determine the locations on the x-axis where the observer could relocate theirself where the sound intensity is at a minimum. The provided answers are 11.25 meters and 1.75 meters; however, I am unsure how to actually solve this problem. This is from the interference and diffraction chapter of my optics and thermodynamics course.

Solutions

Expert Solution

The two speakers are at a distance

To find the path difference of sound at point O,

Path difference  

Phase difference

For minimum sound intensity at point O,

i)for ,

  

Squaring on both sides,

ii)for ,

  

Squaring on both sides,


Related Solutions

Two speakers, A and B, are at the same point on an x-axis and each emits...
Two speakers, A and B, are at the same point on an x-axis and each emits sound with a wavelength of 0.25 m. Speaker B's phase constant is 260 degrees larger than speaker A's phase constant and each produces an amplitude of 10 Pa. What amplitude occurs along the x-axis in front of these speakers (Pa)? b. What is the minimum distance you can move speaker A to achieve constructive interference along the x-axis? Give a positive answer regardless of...
Two speakers 5 m apart, are driven in phase by the same amplifier, at a frequency...
Two speakers 5 m apart, are driven in phase by the same amplifier, at a frequency of 775 Hz. The speed of sound is 340 m/s. An observer starts 5m away from one of the speakers at a point along the perpendicular to the line connecting the two speakers, and moves away from the speakers along that line. a) How much distance separates the second and the third interference minima they hear? b) Do you expect the intensity at the...
Two speakers spaced emitting identical sound waves in phase with each other of wavelength 1.00 m...
Two speakers spaced emitting identical sound waves in phase with each other of wavelength 1.00 m are spaceced 5.00 m from eachother. At what minimal distance (in m) from one of them should an observer stand to hear almost nothing (the first minimum)(__________)? The first maximum after this minimum (__________)? Second minimum (__________)? Second maximum (__________)? Third minimum (__________)? Third maximum (__________)? How many minima overall can be observed (__________)? How many maxima (__________)?
Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one...
Two in-phase loudspeakers emit identical 1000 Hz sound waves along the x-axis. What distance should one speaker be placed behind the other for the sound to have an amplitude 1.90 times that of each speaker alone?
Chapter 2 Question 5: The position of an object moving along an x axis is given...
Chapter 2 Question 5: The position of an object moving along an x axis is given by, where x is in meters and t is in seconds. Find the position of the object at the following values of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object’s displacement between and s? (f) What is its average velocity for the time interval from s to s? Question 6: A pickup vehicle...
Particle Position and Time The position of a particle moving along the x axis depends on...
Particle Position and Time The position of a particle moving along the x axis depends on the time according to the equation x = ct2 - bt3, where x is in meters and t in seconds. (a) What dimension and units must c have? s2/ms/m2     m/s2m2/s What dimension and units must b have? m3/ss/m3     s3/mm/s3 For the following, let the numerical values of c and b be 3.3 and 1.0 respectively. (b) At what time does the particle reach its maximum positive...
The position of an object moving along an x axis is given by x = 3.12...
The position of an object moving along an x axis is given by x = 3.12 t - 4.08 t2 + 1.10 t3, where x is in meters and t in seconds. Find the position of the object at the following values of t: (a) 1 s, (b) 2 s, (c) 3 s, and (d) 4 s. (e) What is the object's displacement between t = 0 and t = 4 s? (f) What is its average velocity from t...
The position of a particle moving along the x axis is given in centimeters by x...
The position of a particle moving along the x axis is given in centimeters by x = 9.72 + 1.85 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the instantaneous velocity when the particle is...
The position of a particle moving along an x axis is given by x = 12.0t2...
The position of a particle moving along an x axis is given by x = 12.0t2 - 4.00t3, where x is in meters and t is in seconds. Determine (a) the position, (b) the velocity, and (c) the acceleration of the particle at t = 5.00 s. (d) What is the maximum positive coordinate reached by the particle and (e) at what time is it reached? (f) What is the maximum positive velocity reached by the particle and (g) at...
Two identical particles, each of mass m, are located on the x axis at x=+x0 and...
Two identical particles, each of mass m, are located on the x axis at x=+x0 and x=-x0 a. Determine a formula for the gravitational field due to these two particles for points on the y axis; that is, write g⃗ g→ as a function of y, m, x0, and so on. Express your answers in terms of the variables y, m, x0, and appropriate constants. Enter your answers separated by a comma. b. At what point (or points) on the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT