In: Statistics and Probability
Chapter 2 Exercise is divided in to 2 sections A and B. Data for this assignment is under Data files in module Ex2-30-e8.xls (for A) and Ex2-34-e8.xls (for B). See data under modules.
A) The following data give the weekly amounts spent on groceries for a sample of households.
$271 |
$363 |
$159 |
$ 76 |
$227 |
$337 |
$295 |
$319 |
$250 |
279 |
205 |
279 |
266 |
199 |
177 |
162 |
232 |
303 |
192 |
181 |
321 |
309 |
246 |
278 |
50 |
41 |
335 |
116 |
100 |
151 |
240 |
474 |
297 |
170 |
188 |
320 |
429 |
294 |
570 |
342 |
279 |
235 |
434 |
123 |
325 |
312 |
2,753 |
2,595 |
6,057 |
7,624 |
6,624 |
6,362 |
6,575 |
7,760 |
7,085 |
7,272 |
5,967 |
5,256 |
6,160 |
6,238 |
6,709 |
7,193 |
5,631 |
6,490 |
6,682 |
7,829 |
7,091 |
6,871 |
6,230 |
7,253 |
5,507 |
5,676 |
6,974 |
6,915 |
4,999 |
5,689 |
6,143 |
7,086 |
Solution
Let x = amount ($) spent on groceries
Back-up Theory
Let xi =mid-point and fi be the frequency of ith classi. Then,
Mean (Average), µ, = Σ(i = 1, n)(xi.ri)/Σ(i = 1, n)(fi) ………………………….......................………. (1)
Variance, σ2 = Σ(i = 1, n){fi.(xi – µ)2}/ Σ(i = 1, n)(fi) or equivalently [{Σ(i = 1, n){fi.(xi)2} – µ2 ]...... . (2)
Standard deviation (SD), σ = sqrt(Variance) ……………………………………........................….. (3)
Now to work out the solution,
Final answers are given below. Back-up Theory and Details of calculations follow at the end.
Part (a)
Frequency Distribution
Maximum value: 570
Minimum value: 41
Range of values: 529
Stipulated number of classes: 9
Class width = 529/9 = 59 ~ 60
Class # i |
Class Boundaries |
Frequency |
1 |
40 to 100 |
3 |
2 |
100 to 160 |
4 |
3 |
160 to 220 |
6 |
4 |
220 to 280 |
12 |
5 |
280 to 340 |
10 |
6 |
340 to 400 |
2 |
7 |
400 to 460 |
1 |
8 |
460 to 520 |
1 |
9 |
520 to 580 |
1 |
Total |
40 |
Answer 1
Part (b)
Vide (1), mean = 254.5 Answer 2
[Details follow at the end after Part (c).]
Part (c)
Vide (2), variance = 10,509.7500 Answer 3
Vide (3), standard deviation = 102.52 Answer 4
[Details follow]
Class # i |
Class Boundaries |
Frequency fi |
Mid-point xi |
fi.xi |
di = xi - mean |
di2 |
di2.fi |
1 |
40 to 100 |
3 |
70 |
210 |
-184.5 |
34040.25 |
102120.75 |
2 |
100 to 160 |
4 |
130 |
520 |
-124.5 |
15500.25 |
62001 |
3 |
160 to 220 |
6 |
190 |
1140 |
-64.5 |
4160.25 |
24961.5 |
4 |
220 to 280 |
12 |
250 |
3000 |
-4.5 |
20.25 |
243 |
5 |
280 to 340 |
10 |
310 |
3100 |
55.5 |
3080.25 |
30802.5 |
6 |
340 to 400 |
2 |
370 |
740 |
115.5 |
13340.25 |
26680.5 |
7 |
400 to 460 |
1 |
430 |
430 |
175.5 |
30800.25 |
30800.25 |
8 |
460 to 520 |
1 |
490 |
490 |
235.5 |
55460.25 |
55460.25 |
9 |
520 to 580 |
1 |
550 |
550 |
295.5 |
87320.25 |
87320.25 |
Total |
40 |
10180 |
243722.25 |
420390.00 |
Mean = 10180/40 |
254.5 |
Variance = 420390/40 |
10,509.7500 |
Standerd deviation = √6093.0563 |
102.52 |
DONE