In: Math
To see if a spinner that is divided into 100 equal sections labeled 1 to 100 is fair, a researcher spins the spinner 1000 times and records the result. Let X represent the outcome. The table below shows the probability distribution of the data. Find the mean and the standard deviation of the probability distribution using Excel. Round the mean and standard deviation to two decimal places.
The formulas are as follows:
The data is given below with the calculations:
X | P(X) | X*P(X) | X*X*P(X) |
1 | 0.011 | 0.011 | 0.011 |
2 | 0.011 | 0.022 | 0.044 |
3 | 0.011 | 0.033 | 0.099 |
4 | 0.01 | 0.04 | 0.16 |
5 | 0.008 | 0.04 | 0.2 |
6 | 0.011 | 0.066 | 0.396 |
7 | 0.011 | 0.077 | 0.539 |
8 | 0.01 | 0.08 | 0.64 |
9 | 0.01 | 0.09 | 0.81 |
10 | 0.011 | 0.11 | 1.1 |
11 | 0.011 | 0.121 | 1.331 |
12 | 0.01 | 0.12 | 1.44 |
13 | 0.008 | 0.104 | 1.352 |
14 | 0.01 | 0.14 | 1.96 |
15 | 0.008 | 0.12 | 1.8 |
16 | 0.012 | 0.192 | 3.072 |
17 | 0.006 | 0.102 | 1.734 |
18 | 0.011 | 0.198 | 3.564 |
19 | 0.012 | 0.228 | 4.332 |
20 | 0.009 | 0.18 | 3.6 |
21 | 0.011 | 0.231 | 4.851 |
22 | 0.012 | 0.264 | 5.808 |
23 | 0.01 | 0.23 | 5.29 |
24 | 0.011 | 0.264 | 6.336 |
25 | 0.011 | 0.275 | 6.875 |
26 | 0.01 | 0.26 | 6.76 |
27 | 0.01 | 0.27 | 7.29 |
28 | 0.01 | 0.28 | 7.84 |
29 | 0.012 | 0.348 | 10.092 |
30 | 0.009 | 0.27 | 8.1 |
31 | 0.011 | 0.341 | 10.571 |
32 | 0.011 | 0.352 | 11.264 |
33 | 0.008 | 0.264 | 8.712 |
34 | 0.009 | 0.306 | 10.404 |
35 | 0.009 | 0.315 | 11.025 |
36 | 0.009 | 0.324 | 11.664 |
37 | 0.01 | 0.37 | 13.69 |
38 | 0.008 | 0.304 | 11.552 |
39 | 0.009 | 0.351 | 13.689 |
40 | 0.01 | 0.4 | 16 |
41 | 0.012 | 0.492 | 20.172 |
42 | 0.01 | 0.42 | 17.64 |
43 | 0.009 | 0.387 | 16.641 |
44 | 0.009 | 0.396 | 17.424 |
45 | 0.01 | 0.45 | 20.25 |
46 | 0.011 | 0.506 | 23.276 |
47 | 0.01 | 0.47 | 22.09 |
48 | 0.011 | 0.528 | 25.344 |
49 | 0.011 | 0.539 | 26.411 |
50 | 0.011 | 0.55 | 27.5 |
51 | 0.011 | 0.561 | 28.611 |
52 | 0.01 | 0.52 | 27.04 |
53 | 0.007 | 0.371 | 19.663 |
54 | 0.011 | 0.594 | 32.076 |
55 | 0.009 | 0.495 | 27.225 |
56 | 0.01 | 0.56 | 31.36 |
57 | 0.007 | 0.399 | 22.743 |
58 | 0.011 | 0.638 | 37.004 |
59 | 0.011 | 0.649 | 38.291 |
60 | 0.012 | 0.72 | 43.2 |
61 | 0.008 | 0.488 | 29.768 |
62 | 0.011 | 0.682 | 42.284 |
63 | 0.009 | 0.567 | 35.721 |
64 | 0.01 | 0.64 | 40.96 |
65 | 0.01 | 0.65 | 42.25 |
66 | 0.011 | 0.726 | 47.916 |
67 | 0.009 | 0.603 | 40.401 |
68 | 0.01 | 0.68 | 46.24 |
69 | 0.01 | 0.69 | 47.61 |
70 | 0.009 | 0.63 | 44.1 |
71 | 0.01 | 0.71 | 50.41 |
72 | 0.01 | 0.72 | 51.84 |
73 | 0.011 | 0.803 | 58.619 |
74 | 0.008 | 0.592 | 43.808 |
75 | 0.009 | 0.675 | 50.625 |
76 | 0.009 | 0.684 | 51.984 |
77 | 0.011 | 0.847 | 65.219 |
78 | 0.011 | 0.858 | 66.924 |
79 | 0.011 | 0.869 | 68.651 |
80 | 0.009 | 0.72 | 57.6 |
81 | 0.01 | 0.81 | 65.61 |
82 | 0.008 | 0.656 | 53.792 |
83 | 0.009 | 0.747 | 62.001 |
84 | 0.011 | 0.924 | 77.616 |
85 | 0.012 | 1.02 | 86.7 |
86 | 0.01 | 0.86 | 73.96 |
87 | 0.009 | 0.783 | 68.121 |
88 | 0.011 | 0.968 | 85.184 |
89 | 0.01 | 0.89 | 79.21 |
90 | 0.01 | 0.9 | 81 |
91 | 0.009 | 0.819 | 74.529 |
92 | 0.011 | 1.012 | 93.104 |
93 | 0.011 | 1.023 | 95.139 |
94 | 0.011 | 1.034 | 97.196 |
95 | 0.008 | 0.76 | 72.2 |
96 | 0.01 | 0.96 | 92.16 |
97 | 0.01 | 0.97 | 94.09 |
98 | 0.01 | 0.98 | 96.04 |
99 | 0.011 | 1.089 | 107.811 |
100 | 0.009 | 0.9 | 90 |
Total | 1 | 50.28 | 3368.35 |
mu = 50.28 | |||
Variance = 3368.35 - 50.28*50.28 | 840.57 | ||
Standard Deviation = Square root of variance | 28.99 |
Mean = 50.28
Standard deviation = Square root of variance = 28.99