Question

In: Physics

A mass of 3.8 kg is originally moving at 8 m/s at the top of a...

A mass of 3.8 kg is originally moving at 8 m/s at the top of a frictionless incline which has a length of 6.2 meters and an inclination angle of 56 degrees. It slides down the incline and over a horizontal surface in which a portion of it has friction. The coefficient of kinetic friction is 0.37 and the portion of the surface which has friction is 8 meters. At the end of the horizontal surface is a spring. The mass compresses the spring 0.65 meters before it is stopped. What is the amount of force produced by the spring when the mass is stopped in Newtons?

Solutions

Expert Solution

Gravitational acceleration = g = 9.81 m/s2

Mass of the object = m = 3.8 kg

Speed of the object at the top of the incline = V1 = 8 m/s

Length of the incline = L = 6.2 m

Angle of incline = = 56o

Height of the incline= H

H = LSin

Speed of the object at the bottom of the incline = V2

By conservation of energy the potential and kinetic energy of the object at the top of the incline is equal to the kinetic energy of the object at the bottom of the incline.

mV12/2 + mgH = mV22/2

V12/2 + gLSin = V22/2

(8)2/2 + (9.81)(6.2)Sin(56) = V22/2

V2 = 12.84 m/s

Coefficient of kinetic friction of the rough floor = = 0.37

Friction force on the object = f = mg

Length of the rough floor = D = 8 m

Speed of the object after crossing the rough floor = V3

By conservation of energy the kinetic energy of the object before the rough floor is equal to the kinetic energy of the object after passing the rough floor plus the work done against friction.

mV22/2 = mV32/2 + fD

mV22/2 = mV32/2 + mgD

V22/2 = V32/2 + gD

(12.84)2/2 = V32/2 + (0.37)(9.81)(8)

V3 = 10.334 m/s

Spring constant = k

Compression of the spring when the object comes to a stop = X = 0.65 m

By conservation of energy the kinetic energy of the object before coming in contact with the spring is converted into the potential energy of the spring as the object comes to a stop.

mV32/2 = kX2/2

mV32 = kX2

(3.8)(10.334)2 = k(0.65)2

k = 960.492 N/m

Force applied by the spring when the mass is stopped = F

F = kX

F = (960.492)(0.65)

F = 624.32 N

Force applied by the spring when the mass is stopped = 624.32 N


Related Solutions

8) 3 kg mass moving with 10 m/s in the x-direction hits a 5 kg mass...
8) 3 kg mass moving with 10 m/s in the x-direction hits a 5 kg mass at rest. After the collision 3 kg is deflected by 30 degree while the 5 kg is deflected by 45 degrees. a) Draw a diagram for the initial and final motion including the directions of the velocities b) Find the final velocities of each mass c) Determine if the collision is elastic or not. d) Qualitatively, show the direction of the impulse (or the...
A spherical satellite of radius 4.8 m and mass M = 210 kg is originally moving...
A spherical satellite of radius 4.8 m and mass M = 210 kg is originally moving with velocity satellite,i = < 2800, 0, 0 > m/s, and is originally rotating with an angular speed ω1 = 2 radians/second, in the direction shown in the diagram. A small piece of space junk of mass m = 3.9 kg is initially moving toward the satellite with velocity junk,i = < -2600, 0, 0 > m/s. The space junk hits the edge of...
Question 3 If a 8 kg mass, moving at 7 m/s to the right, hits and...
Question 3 If a 8 kg mass, moving at 7 m/s to the right, hits and sticks to a 18 kg mass, moving at 20 m/s to the right, and they travel off together at the same speed to the right, find that speed. Hint: both masses are moving to the right, so both velocities are positive. Use the "hit and stick" or inelastic formula Question 4 If a 11 kg mass, moving at 7 m/s to the right, hits...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in...
A softball of mass 0.220 kg that is moving with a speed of 8.0 m/s (in the positive direction) collides head-on and elastically with another ball initially at rest. Afterward the incoming softball bounces backward with a speed of 6.4 m/s. (a) Calculate the velocity of the target ball after the collision. (b) Calculate the mass of the target ball
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s...
A truck with a mass of 1350 kg and moving with a speed of 12.0 m/s rear-ends a 821-kg car stopped at an intersection. The collision is approximately elastic since the car is in neutral, the brakes are off, the metal bumpers line up well and do not get damaged. Find the speed of both vehicles after the collision. vcar = ___________________ m/s vtruck = ____________________ m/s
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4...
A 2 kg mass moving to the right at 10 m/s collides elastically with a 2.4 kg mass moving to the left at 8.33 m/s. After the collision the 2 kg mass moved at a speed vgf in a direction of 30 degrees and the 2.4 kg object at a speed vbf in a direction 30 degrees south of west. (5 pts) a. What is the difference between an elastic and an inelastic collision? (15 pts) b. Find the velocity...
A ball, mass m1 = 0.1 kg, is moving upwards with a speed of 10 m/s...
A ball, mass m1 = 0.1 kg, is moving upwards with a speed of 10 m/s when it collides inelastically with a cup, mass m2 = 0.9 kg, that is initially at rest. After the collision the system (ball+cup) moves straight upwards without rotating. This collision occurs on Earth, and the local gravitational field points down with g = 9.8 m/s2 . (a) What is the momentum of the system before the collision? Write your final answers and neatly show...
1) A ball 1 with a mass of 2.0 kg and moving at 2.0 m/s strikes...
1) A ball 1 with a mass of 2.0 kg and moving at 2.0 m/s strikes a glancing blow on a second ball 2 which is initially at rest. Assume no external forces act. After the collision, ball 1 is moving at right angles to its original direction at a speed of 3.0 m/s. (a) Calculate the initial momentum of the system. (b) Determine the magnitude of the momentum of Ball 2 after the collision? (c) In what direction is...
A charged particle of mass m = 7.3X10-8 kg, moving with constant velocity in the y-direction...
A charged particle of mass m = 7.3X10-8 kg, moving with constant velocity in the y-direction enters a region containing a constant magnetic field B = 1.8T aligned with the positive z-axis as shown. The particle enters the region at (x,y) = (0.5 m, 0) and leaves the region at (x,y) = 0, 0.5 m a time t = 463 μs after it entered the region. 1. With what speed v did the particle enter the region containing the magnetic...
A railroad car of mass 18800 kg moving at 3.85 m/s collides and couples with two...
A railroad car of mass 18800 kg moving at 3.85 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 2.31 m/s. How much kinetic energy is lost in the collision? Answer in units of J.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT