Question

In: Math

3. Consider the parametric curve x = sin 2t, y = − cos 2t for −π/4...

3. Consider the parametric curve x = sin 2t, y = − cos 2t for −π/4 ≤ t ≤ π/4.

(a) (2 pts) Find the Cartesian form of the curve.

(b) (3 pts) Sketch the curve. Label the starting point and ending point, and draw an
arrow on the curve to indicate the direction of travel.

(c) (5 pts) Find an equation for the curve’s tangent line at the point
√2/2, −√2/2

.

Solutions

Expert Solution


Related Solutions

Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π...
Consider the parametric equation of a curve: x=cos(t), y= 1- sin(t), 0 ≤ t ≤ π Part (a): Find the Cartesian equation of the curve by eliminating the parameter. Also, graph the curve and indicate with an arrow the direction in which the curve is traced as the parameter increases. Label any x and y intercepts. Part(b): Find the point (x,y) on the curve with tangent slope 1 and write the equation of the tangent line.
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral...
Consider the spiral path x(t) = (cos^2t,sin^2t,t) for 0 ≤ t ≤ π/2. Evaluate the integral x dx−y dy + z^2 dz
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , ,...
Consider the helix r(t)=(cos(2t),sin(2t),−3t)r(t)=(cos(2t),sin(2t),−3t). Compute, at t=π/6 A. The unit tangent vector T=T= ( , , ) B. The unit normal vector N=N= ( , , ) C. The unit binormal vector B=B= ( , , ) D. The curvature κ=κ=
For this parametrized curve: x = e^(2t) sin t , y = cos(4t) find tangent line...
For this parametrized curve: x = e^(2t) sin t , y = cos(4t) find tangent line to curve when t=1
We have a parametric curve x = - 6t + t^3 + 1, y = -2t...
We have a parametric curve x = - 6t + t^3 + 1, y = -2t − t^2 a) Sketch a graph of the curve (use technology to help) b) Find the equation of the tangent line at t = –1 c) Find the value(s) of t where the tangent is horizontal. d) Find the value(s) of t where the tangent is vertical.
Consider the curve traced out by the parametric equations: { x = 1 + cos(t) y...
Consider the curve traced out by the parametric equations: { x = 1 + cos(t) y = t + sin(t) for 0 ≤ t ≤ 4π. 1. Show that that dy dx = − 1 + cos(t)/sin(t) = − csc(t) − cot(t). 2. Make a Sign Diagram for dy dx to find the intervals of t over which C is increasing or decreasing. • C is increasing on: • C is decreasing on: 3. Show that d2y/dx2 = − csc2...
f(x,y)=sin(2x)sin(y) intervals for x and y: -π/2 ≤ x ≤ π/2 and -π ≤ y ≤...
f(x,y)=sin(2x)sin(y) intervals for x and y: -π/2 ≤ x ≤ π/2 and -π ≤ y ≤ π find extrema and saddle points In the solution, I mainly interested how to findcritical points in case of the system of trigonometric equations (fx=0 and fy=0). ,
a. (5 Marks) 1 1 cos(x)cos(y) = -cos(x-y) + -cos(x + y) 1 l sin(x)sin(y) =...
a. 1 1 cos(x)cos(y) = -cos(x-y) + -cos(x + y) 1 l sin(x)sin(y) = -cos(x-y)--cos(x+ y) 1 l sin(x)cos(y) =—sin(x-y) +-sin(x + y) A DSB-FC (double sideband-full carrier) signal s(t) is given by, s(t) = n cos(2rr/cf)+ cos(2«-/mt)cos(2«-fct) What is the numeric value for the AM index of modulation, m, fors(f) ?
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos...
The cycloid has parametric equations x = a(t + sin t), y = a(1 - cos t). Find the length of the arc from t = 0 to t = pi. [ Hint: 1 + cosA = 2 cos2 A/2 ]. and the arc length of a parametric
Find dy/dx by implicit differentiation: cos(x+y)=y^3 sin x
Find dy/dx by implicit differentiation: cos(x+y)=y^3 sin x
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT