In: Statistics and Probability
You are conducting a quality control test for bolts delivered by your supplier. The diameter of the bolt must be within 0.01 mm. of the size of pre-drilled holes in shaped metal parts for the machine that your company manufactures. Suppose that the true proportion of bolts that meet your specs is p = 0.82. What is the minimum sample size required for the sample proportion to have approximately a Normal distribution?
Round your answer to the nearest integer. (Note: in practice, you should round up. However, except for small minimum sample sizes, the two methods of rounding have about the same effect on the results.)
sample proportion ,   p̂ =   
0.82          
           
   
sampling error ,    E =   0.01  
           
           
Confidence Level ,   CL=   0.95  
           
           
          
           
           
alpha =   1-CL =   0.05  
           
           
Z value =    Zα/2 =    1.960   [excel
formula =normsinv(α/2)]      
           
   
          
           
           
Sample Size,n = (Z / E)² * p̂ * (1-p̂) = (  
1.960   /   0.01   ) ² *  
0.82   * ( 1 -   0.82   ) =
   5669.9932
          
           
           
          
           
           
so,Sample Size required=      
5670