Question

In: Statistics and Probability

In testing H0: μ1 - μ2 = 0 versus Ha: μ1 - μ2 ≠ 0, the...

In testing H0: μ1 - μ2 = 0 versus Ha: μ1 - μ2 ≠ 0, the computed value of the test statistic is z = 1.98. The P-value for this two-tailed test is then:

a. .0478

b. .2381

c. .4761

d. .0239

e. .2619

Solutions

Expert Solution

Solutoion:

H0: μ1 - μ2 = 0 versus Ha: μ1 - μ2 ≠ 0

z = 1.98

Using Normal Table,

The P-value for this two-tailed test = 2*P(z > 1.98) = 2*(1-P(z<1.98)) = 2*(1-0.97615)) = 2*(1-0.9762)) = 0.0478

a. .0478


Related Solutions

Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations assuming the variances are unequal. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.8 s2 = 8.2 (a) What is the value of the test statistic? 2.153 correct (b) What is the degrees of freedom for the t distribution? (Round your answer...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠...
Consider the following hypothesis test. H0: μ1 − μ2 = 0 Ha: μ1 − μ2 ≠ 0 The following results are from independent samples taken from two populations. Sample 1 Sample 2 n1 = 35 n2 = 40 x1 = 13.6 x2 = 10.1 s1 = 5.9 s2 = 8.1 (a) What is the value of the test statistic? (Use x1 − x2. Round your answer to three decimal places.) (b) What is the degrees of freedom for the t...
a. We are testing H0: μ1 - μ2 = 0. Our 95% confidence interval is (-27.01,-7.5)....
a. We are testing H0: μ1 - μ2 = 0. Our 95% confidence interval is (-27.01,-7.5). We should expect the t-statistic to be  ---Select--- greater than 2 between 0 and 2 between 0 and -2 less than -2 . We should expect the p-value to be  ---Select--- less than .05 greater than .05 equal to .05 . We should  ---Select--- reject fail to reject H0 and conclude that the group 1 population average is  ---Select--- smaller larger than the group 2 population average. It...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 23 and a sample standard deviation of 4.6. A random sample of 8 observations from another population revealed a sample mean of 28 and a sample standard deviation of 3.6. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 12 observations from one population revealed a sample mean of 25 and a sample standard deviation of 3.5. A random sample of 9 observations from another population revealed a sample mean of 30 and a sample standard deviation of 3.5. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 9 observations from one population revealed a sample mean of 22 and a sample standard deviation of 3.9. A random sample of 9 observations from another population revealed a sample mean of 27 and a sample standard deviation of 4.1. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 11 observations from one population revealed a sample mean of 23 and a sample standard deviation of 1.1. A random sample of 4 observations from another population revealed a sample mean of 24 and a sample standard deviation of 1.3. At the 0.05 significance level, is there a difference between the population means? State the decision rule. (Negative amounts should...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 10 observations from Population 1 revealed a sample mean of 21 and sample deviation of 5. A random sample of 4 observations from Population 2 revealed a sample mean of 22 and sample standard deviation of 5.1. The underlying population standard deviations are unknown but are assumed to be equal. At the .05 significance level, is there a difference between...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2...
The null and alternate hypotheses are: H0 : μ1 = μ2 H1 : μ1 ≠ μ2 A random sample of 10 observations from one population revealed a sample mean of 23 and a sample standard deviation of 3.5. A random sample of 4 observations from another population revealed a sample mean of 27 and a sample standard deviation of 3.6. At the 0.01 significance level, is there a difference between the population means? State the decision rule. (Negative values should...
The null and alternate hypotheses are:    H0: μ1 ≤ μ2 H1: μ1 > μ2 A...
The null and alternate hypotheses are:    H0: μ1 ≤ μ2 H1: μ1 > μ2 A random sample of 26 items from the first population showed a mean of 114 and a standard deviation of 9. A sample of 15 items for the second population showed a mean of 99 and a standard deviation of 7. Assume the sample populations do not have equal standard deviations. a. Find the degrees of freedom for unequal variance test. (Round down your answer...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT