Question

In: Mechanical Engineering

Thermodynamics ANSWER: 1,713.4 Determine the specific enthalpy of 1.5 kg of water contained in a volume...

Thermodynamics

ANSWER: 1,713.4

Determine the specific enthalpy of 1.5 kg of water contained in a volume of 0.73 m3 at 200 kPa.

Solutions

Expert Solution

Specific volume is;

__________________________________________________________________________

Using Table A-5, at ;

__________________________________________________________________________


Related Solutions

Water at 700 oC has a specific volume of 0.02600m3/kg. Determine the pressure of the water...
Water at 700 oC has a specific volume of 0.02600m3/kg. Determine the pressure of the water based on a) ideal gas equation, b) the generalized compressibility chart and c)the steam tables. (d) Determine the error involved in cases (a) & (b).
Determine the specific enthalpy of fusion of water. Mass of Calrimeter is 3.492g, Mass os water...
Determine the specific enthalpy of fusion of water. Mass of Calrimeter is 3.492g, Mass os water is 43.552g. Mass of Ice is 29.276g. Initial water temp is 24 degrees C. Initial Ice is 0 C. Final Calrimeter temp is 1C. What is the q(ice) in joules, and what is the Delta fusion H of ice in J/g and what is the % difference? The accepted enthalpy value for ice is 335J/g.
Thermodynamics - water P = 20 bar, T = 250 C, what is the specific volume?...
Thermodynamics - water P = 20 bar, T = 250 C, what is the specific volume? (choose the closest answer) a)0.1085 b)0.15 c)0.1200 d)0.1308 T = 240 C, P = 2.5 bar, what is the specific internal energy?. a)2713.1 b)2714 c)2717.2 d)2720 P = 20 bar, h = 2900 kJ/kg, what is the temperature? a)250 b)240 c)280 d)300
Steam is contained in a 4-liter volume at a pressure of 1.5 MPa and a temperature...
Steam is contained in a 4-liter volume at a pressure of 1.5 MPa and a temperature of 200°C. If the pressure is held constant by expanding the volume while 40 kJ of heat is added, find the final temperature. use enthalpy.
Determine the temperature, volume, and quality for one kg of water at H=3500kJ/kg, P =0.1MPa. (Using...
Determine the temperature, volume, and quality for one kg of water at H=3500kJ/kg, P =0.1MPa. (Using steam tables)
For H2O, determine the specific volume at the indicated state, in m3/kg. (a) T = 400°C,...
For H2O, determine the specific volume at the indicated state, in m3/kg. (a) T = 400°C, p = 20 MPa. (b) T = 120°C, p = 20 MPa. (c) T = 40°C, p = 2 MPa. I have figured out how to do A, but can't get the correct answer for B or C. All the examples I am finding are with numbers that are listed already on the charts, and mine are not so I need to approach the...
For H2O, determine the specific volume at the indicated state, in m3/kg. (a) T = 480°C,...
For H2O, determine the specific volume at the indicated state, in m3/kg. (a) T = 480°C, p = 20 MPa. (b) T = 160°C, p = 20 MPa. (c) T = 40°C, p = 2 MPa.
(THERMODYNAMICS) A vertical cylinder fitted with a frictionless piston contains 1.5 kg of H2O initially at...
(THERMODYNAMICS) A vertical cylinder fitted with a frictionless piston contains 1.5 kg of H2O initially at 100 °C, 400 kPa.  If the volume of the system reaches 0.5 m3, the piston hits a set of stops and is restrained from further upward travel. The system is heated to 200 C. (Use saturated water tables, steam tables, and superheated tables as necessary) a)   If the piston reaches the stops, determine the temperature and pressure when the piston first touches but exerts no force...
1)Consider water at 500 kPa and a specific volume of 0.2 m3/kgm3/kg. What is the temperature...
1)Consider water at 500 kPa and a specific volume of 0.2 m3/kgm3/kg. What is the temperature (in °C)? 2)Consider water at 500 kPa and a specific volume of 0.2 m3/kgm3/kg. What is the quality (on a 0 to 1 scale)? 3)Consider water at 1400 kPa and 200°C. What is the specific volume (in m3/kgm3/kg)?
Water contained in a piston-cylinder assembly as shown in the Figure below, initially at 1.5 ???...
Water contained in a piston-cylinder assembly as shown in the Figure below, initially at 1.5 ??? and a quality of 20%, is heated at a constant pressure until the piston hits the stops. Heating then continues until the water is saturated vapor. Show the processes of the water in series on a sketch of the ?-? diagram. For the overall process of the water, evaluate the work and heat transfer, each in ??⁄??. Kinetic and potential effects are negligible. (please...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT