In: Physics
A mass M travels at a speed V in the forward x- direction: It explodes into two pieces: one with mass m1 the other with mass m2. The mass m1 moves at an angle φ1 above the x-axis and the mass m2 moves at an angle φ2 below the x-axis. Both angles are directed in the forward direction. Find the magnitues of the momenta of the two pieces in terms of M V and the two angles
M = m1 + m2
P = p1 + p2
p1x = m1v1 cos(phi1)
p2x = m2v2 cos(phi2)
p1y = m1v1 sin(phi1)
p2y = m2v2 sin(phi2)
Conservation of momentum in Y direction
0 = m1v1 sin(phi1) + m2v2 sin(phi2)
m1v1 sin(phi1) = -m2v2 sin(phi2)
P1 sin(phi1) = -P2 sin(phi2)
P1 = -P2 sin(phi2)/sin(phi1)
in X direction
MV = m1v1 cos(phi1) + m2v2 cos(phi2)
MV = P1 cos(phi1) + P2 cos(phi2)
MV = -P2 sin(phi2)/sin(phi1) + P2 cos(phi2)
P2 = MV/(cos(phi2) - sin(phi2)/sin(phi1))
P1 = -MV/(cos(phi2) - sin(phi2)/sin(phi1)) [sin(phi2)/sin(phi1)]