In: Statistics and Probability
A cognitive psychologist working in the area of suggestion asked
a sample of children to solve as many problems as they could in 10
minutes. Half of the children are told that this is a
problem-solving task and the other half are told that this is just
a time-filling task. The psychologist is interested in the impact
of the suggestion on problem solving. What can be concluded with an
α of 0.05? Below is the data for the number of problems
solved.
| problem-solving | time-filling | 
| 3 4 7 4 2 6 4  | 
10 5 8 7 6 8 7  | 
a) What is the appropriate test statistic?
---Select---naz-testOne-Sample t-testIndependent-Samples
t-testRelated-Samples t-test
b)
Condition 1:
---Select---the
childrensuggestiontime-fillingproblem-solvingproblems solved
Condition 2:
---Select---the
childrensuggestiontime-fillingproblem-solvingproblems solved
c) Obtain/compute the appropriate values to make a
decision about H0.
(Hint: Make sure to write down the null and alternative hypotheses
to help solve the problem.)
critical value = ______; test statistic = _________
Decision: ---Select---Reject H0Fail to reject H0
d) If appropriate, compute the CI. If not
appropriate, input "na" for both spaces below.
[____ ,_____ ]
e) Compute the corresponding effect size(s) and
indicate magnitude(s).
If not appropriate, input and/or select "na" below.
d =_________ ; ---Select---natrivial effectsmall
effectmedium effectlarge effect
r2 = _________; ---Select---natrivial
effectsmall effectmedium effectlarge effect
f) Make an interpretation based on the
results.
Children that were told this is a problem-solving task solved significantly more problems than children that were told this is a time-filling task.
Children that were told this is a problem-solving task solved significantly less problems than children that were told this is a time-filling task.
The suggestions had no significant impact on problem solving.
a)
Independent-Samples t-test
b)
condition 1 : problem solving
condition 2: time filling
c)
Sample #1   ---->   1  
           
   
mean of sample 1,    x̅1=   4.286  
           
   
standard deviation of sample 1,   s1 =   
1.704          
       
size of sample 1,    n1=   7  
           
   
          
           
   
Sample #2   ---->   2  
           
   
mean of sample 2,    x̅2=   7.286  
           
   
standard deviation of sample 2,   s2 =   
1.604          
       
size of sample 2,    n2=   7  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
4.2857   -   7.3   =  
-3.00  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    1.6547  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
0.8845          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
-3.0000   -   0   ) /   
0.88   =   -3.3918
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
12          
       
t-critical value , t* =       
2.179   (excel formula
=t.inv(α/2,df)          
   
decision: Reject Ho
d)
Degree of freedom, DF=   n1+n2-2 =   
12          
   
t-critical value =    t α/2 =   
2.1788   (excel formula =t.inv(α/2,df)  
       
          
           
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    1.6547  
           
          
           
std error , SE =    Sp*√(1/n1+1/n2) =   
0.8845          
   
margin of error, E = t*SE =    2.1788  
*   0.88   =   1.93  
          
           
difference of means =    x̅1-x̅2 =   
4.2857   -   7.286   =  
-3.0000
confidence interval is       
           
   
Interval Lower Limit=   (x̅1-x̅2) - E =   
-3.0000   -   1.9271   =  
-4.927
Interval Upper Limit=   (x̅1-x̅2) + E =   
-3.0000   +   1.9271   =  
-1.073
e)
effect size,      
cohen's d =    |( x̅1-x̅2 )/Sp | =    1.8130
(large)
      
r²=   0.489 (large)
f)
Children that were told this is a problem-solving task solved significantly less problems than children that were told this is a time-filling task.